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Abstract

This paper fills a gap in the literature by presenting new evidence of the negative impact

of robotization on the change in high-skill employment in US labor markets between 2000

and 2014. I find that the adoption of one robot per thousand workers reduced the change

in the high-skill employment-to-population ratio by 0.18 to 0.24 percentage points, which

implies that each robot prevented the creation of 4 high-skill jobs. Though these findings

are surprising with regard to the literature, which globally argues that technological change

favors high-skill employment, they give new support to a range of theoretical studies. I show

that these results can be explained by a model of tasks commonly used in the literature. In

such models robotization generates reallocations of tasks between low-skill and high-skill

workers, which can negatively impact the employment of high-skill workers. I calibrate

the model and find that robotization reduced the magnitude of the effects that increase

high-skill employment by almost half during this period.
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1 Introduction

The relationship between technological change and jobs is a leading issue in the

literature. Although most of the studies argue that technological change increases

employment, its potential negative effects have been discussed. In particular, dif-

ferent essays suggest that machines could eventually automate the whole range of

production tasks and destroy the related jobs (Keynes 1931, Leontief 1952, Bryn-

jolfsson and McAfee 2014). This concern notably gained importance recently next

to the publication of empirical evidence that jobs are negatively affected by the

adoption of particular smart machines: industrial robots (Chiacchio et al. 2018,

Aghion et al. 2019, Acemoglu and Restrepo 2020, henceforth AR2020). The Inter-

national Federation of Robotics (IFR) defines industrial robots as “automatically

controlled, reprogrammable [and] multipurpose [machines] [...] for use in industrial

automation applications” (IFR 2022), which implies that they exhibit a greater

power of substitution for workers than the standard capital. “Robotization” refers

to the adoption of cutting-edge robots that can automate complex tasks due to in-

novations in robotics, provided that robots are less costly than labor. The evidence

that such a technology is able to destroy more jobs than it creates rekindled the

debate around the impact of technological change on the labor market, and raised

many issues. In particular different studies argue that automation caused the job

polarization observed in many modern economies (Autor et al. 2003, Michaels et

al. 2014), and therefore suggest that robotization favors high-skill employment.

Meanwhile, to the best of my knowledge, no empirical study have assessed the

impact of robotization on high-skill employment.

This paper fills this gap in three ways. First, I highlight novel facts about the

relationship between robotization and the change in high-skill employment in US

labor markets between 2000 and 2014. This is illustrated by Figure 1, where US

labor markets are proxied by the commuting zones of Tolbert and Sizer (1996), and

robotization is proxied by the exposure to robots (AR2020), namely the change in

the stock of robots per thousand workers. Despite an average increase in high-skill

employment, the changes were unbalanced across the commuting zones, so that

the changes in high-skill employment were less than average in the commuting

zones exposed to robots.

The second key contribution is new evidence of the negative and robust impact

of robotization on the change in high-skill employment. I find that the adoption of

one robot per thousand workers reduced the change in the high-skill employment-

to-population ratio by 0.18 to 0.24 percentage points, which implies that each
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adoption of robot prevented the creation of 4 high-skill jobs. Additional estimates

for hourly wages suggest that the adoption of one robot per thousand workers

reduced the change in the hourly wage of high-skill workers by 1.73% to 2.82%.

This indicates that robotization indeed impacted the demand side of the labor

market, and not the supply side.

(a) (b)

Figure 1: US Exposure to Robots and Change in High-Skill Employment between

2000 and 2014
Source : Author’s own calculations, AR2020, 2000 census, 2014 American Community Survey.

Notes : Residual plots of the relationship between robotization (proxied by the exposure to

robots, a measure based on industrial changes in the stocks of robots per thousand workers)

and the change in high-skill employment. High-skill employment is counted as the number of

workers in high-skill occupations in Figure 1a (managers, professionals, and technicians), and

the number of college-educated workers in Figure 1b. Each point corresponds to a commuting

zone, with radius and opacity computed as increasing functions of the population. The solid

lines are population-weighted regression lines. The red points indicate the centers of gravity.

Third, I show that these findings give new support to a range of theoretical

discussions, even though they are surprising with regard to the literature. Indeed,

the documented facts can be explained by a static model building on the model of

tasks of Acemoglu and Autor (2011) and the extension of Acemoglu and Restrepo

(2018). This class of models builds on the ricardian model so that the factor

allocated on a task necessarily holds a comparative advantage, i.e. the highest

productivity / cost ratio, for the production of this task. My main additional

feature is a richer household side that enables the model to return endogenous

employment levels. I lead a comparative statics analysis in which the equilibrium

reacts to two types of processes: robotization and high-skill biased technological

change. The model shows that both processes act as counter-balancing forces on
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high-skill employment. In particular robotization has a negative indirect impact

on high-skill employment because it generates reallocations of tasks between both

types of worker. This effect is known as the “ripple effect” in a few papers (Ace-

moglu and Restrepo 2018, 2022b). The overall employment of high-skill workers

increased because high-skill workers were allocated on additional tasks initially

performed by low-skill workers due to high-skill biased technological change. This

is in line with the downskilling phenomenon documented by a range of studies

(Beaudry et al. 2016; Modestino et al. 2016). However, in the exposed commut-

ing zones robotization decreased the demand and the wage of low-skill workers, and

maintained their comparative advantage for the tasks they were initially perform-

ing even though high-skill workers benefited from high-skill biased technological

change. High-skill job creations were thus less than average. I calibrate the model

and decompose the impact into different effects including, inter alia, the ripple ef-

fect. I find that the ripple effect reduced the magnitude of the effects that increase

high-skill employment by almost half between 2000 and 2014.

This paper is most closely related to the literature studying the impact of

automation on employment (Acemoglu and Restrepo 2018, 2022a, 2022b; Dauth

et al. 2021; Graetz and Michaels 2018; Lankisch et al. 2019; Leduc and Liu 2020;

Zhang 2019) and the demand for skills (Katz and Murphy 1992; Katz and Autor

1999; Acemoglu 1998, 2002; Autor et al. 1998; Autor et al. 2006; Goos and

Manning 2007; Autor and Dorn 2013; Goos et al. 2014; Caines et al. 2017; Cortes

et al. 2020). I contribute to the literature by showing that robotization does not

favor high-skill employment, but rather acts as a counter-balancing force to high-

skill biased technological change. I present new evidence of the negative impact of

the adoption of industrial robots on the change in high-skill employment. These

findings bolster the hypothesis of the overall negative impact of automation on

jobs, which is supported by different papers. Moreover, they give new support

to previous theoretical discussions around the ripple effect, and thus further the

debate around the impact of technological change on employment. Finally, this

is the first paper that assesses the magnitude of the isolated negative effect of

robotization on the change in high-skill employment, namely the ripple effect.

The rest of the paper is organized as follows. Section 2 introduces the theo-

retical model and leads an exploration of the key mechanisms. Section 3 presents

the data and provides different statistics of the main variables. Section 4 discusses

the empirical results. Section 5 assesses the magnitude of the ripple effect, and

Section 6 concludes.
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2 A Model of Robots, Skills and Tasks

2.1 Environment and Equilibrium

I consider a static economy with two representative households characterized by

different skills, denoted by s. Low-skill is denoted by L, high-skill is denoted by

H. A household chooses its level of consumption and labor supply depending on

the following quasi-linear preferences:

Us(Cs, Ns) = Cs −Bs
N1+ε

s

1+ε
, s ∈ {L,H} (1)

where Cs denotes the consumption of the household with skill s, Ns denotes

employment, ε is the inverse of the wage elasticity of labor supply, and Bs is the

parameter of the disutility of work. Each worker supplies one unit of labor. There

is a unit mass of individuals so that employment levels are also employment-to-

population ratios. In addition to labor, households hold robots and non-robot

capital. The household with skill s owns a fixed quantity of non-robot capital Ks

that is perfectly inelastically supplied to firms with a price R. I follow Guerreiro et

al. (2022) and specify that each robot is produced with ϕ units of final good. They

are traded on a perfectly competitive market, which implies that their supply is

perfectly elastic with the quantity M and the price ϕ. The budget constraint of a

household is thus:

Cs ≤ WsNs +RKs, s ∈ {L,H} (2)

where Ws denotes the wage rate of skill s.

The final good is produced by combining a unit continuum of tasks with non-

robot capital using the following technology:

Y = A exp

(∫ 1

0

ln y(i)di

)α

K1−α (3)

where A denotes the total factor productivity, y(i) denotes the quantity of task

i ∈ [0, 1], and α is the share of tasks in the production process. It is traded on a

perfectly competitive market with a price normalized to 1. Tasks are intermediate

goods that can be produced with low-skill workers, high-skill workers or robots,

using the technology:

y(i) =

AL(i)nL(i) + AH(i)nH(i) + AMm(i) ∀ i ∈ [0, θ)

AL(i)nL(i) + AH(i)nH(i) ∀ i ∈ [θ, 1]
(4)
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where AL(i), AH(i), and AM are the productivities of low-skill workers, high-

skill workers and robots; and nL(i), nH(i), m(i) denote the masses of low-skill

workers, high-skill workers and robots allocated on tasks. The production function

of tasks is defined over a threshold θ that delimits the abilities of robots. Indeed,

as it is admitted in the literature, I assume that robots cannot produce the tasks

indexed above this threshold. Then, as it is usually done, I assume that robots

hold a comparative advantage for all the tasks they are able to perform.

Assumption 1.

AM

ϕ
>

AL(i)

WL

,
AH(i)

WH

∀ i ∈ [0, θ] (5)

The productivities of workers are functions of tasks, and their properties have

important implications on the allocation of workers on tasks. Since I am not

interested in the change in low-skill employment, I assume that the productivity

of low-skill workers is constant over tasks, so that AL(i) = AL. To obtain realistic

allocations of factors on tasks, namely those for which high-skill workers do not

directly compete with robots, I follow Acemoglu and Zilibotti (2001) and assume

that AH(i) is affine and increasing.

Assumption 2.

AL(i) = AL (6)

AH(i) = γ(1 + δi) (7)

The economy is affected by two processes. The first one is robotization. It

is modelized as any exogenous process that extends the set of tasks that can be

robotized. More formally, robotization corresponds to an increase in θ. In response

to this technological change producers choose to adopt additional robots because

of Assumption 1. The second process is high-skill biased technological change, i.e.

an exegeneous increase in γ.

An equilibrium is defined as an allocation of factors on tasks {m(i), nL(i),

nH(i)}i∈[0,1], a tuple of quantities {CL, CH , NL, NH ,M, Y, {y(i)}i∈[0,1]}, and a tu-

ple of prices {R,WL,WH}, such that households maximize their utility under

budget constraint; producers minimize their production costs under production

constraint; and markets clear:
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M =
∫ 1

0
m(i)di, NL =

∫ 1

0
nL(i)di, NH =

∫ 1

0
nH(i)di (8)

The next proposition characterizes the optimal allocation of factors on tasks.

Proposition 1. Under Assumptions 1 and 2, for any optimal allocation of factors

on tasks there exists a unique task index I ∈ (θ, 1) such that:

m(i) =


y(i)
AM

∀ i ∈ [0, θ)

0 ∀ i ∈ [θ, 1]
nL(i) =


y(i)
AL

∀ i ∈ [θ, I)

0 ∀ i ∈ [0, θ) ∪ [I, 1]
nH(i) =


y(i)

AH(i)
∀ i ∈ [I, 1]

0 ∀ i ∈ [0, I)

(9)

AL

WL

=
AH(I)

WH

(10)

Proof. See Appendix A1.1.

Assumption 1 guarantees that robots are used at the equilibrium. Assumption

2 guarantees that there exists a unique task, indexed by I, for which the represen-

tative producer is indifferent between allocating low-skill and high-skill workers.

Indeed due to the linearity of AH(i) there is a single task for which low-skill and

high-skill workers return the same productivity / cost ratio. This indicated by

Equation (10). High-skill workers are then allocated on the tasks with the great-

est indexes, so that they do not diectly compete with robots. The equilibrium

allocation is then as follows: robots are allocated on all the tasks indexed below θ;

low-skill workers are allocated on all the tasks indexed between θ and I; and high-

skill workers are allocated on all the tasks indexed above I. Figure 2 illustrates an

equilibrium allocation of factors on tasks. Lines indicate the productivity / cost

ratio of each factor as a function of the task index. Thick parts correspond to the

sets of tasks allocated to factors.

2.2 Comparative Statics and Equilibrium Forces

The next proposition characterizes the equilibrium on both labor markets and

highlights the forces shaping employments.

Proposition 2. Under Assumptions 1 and 2:

d lnNL
Demand = d lnY − d lnWL − dθ

I − θ
+

dI

I − θ
(11)
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Figure 2: Equilibrium Allocation of Factors on Tasks

d lnNH
Demand = d lnY − d lnWH − dI

1− I
(12)

d lnNL
Supply =

1

ε
d lnWL (13)

d lnNH
Supply =

1

ε
d lnWH (14)

dI =
1 + δI

δ
(−d ln γ + d lnWH − d lnWL) (15)

Proof. Log-differentiating (A8), (A9), (A3), (A4) in Appendix A1.1 and (10) leads

to (11), (12), (13), (14), and (15).

Equations (11) and (12) give the changes in labor demands; Equations (13)

and (14) give the changes in labor supplies; and Equation (15) characterizes the

equilibrium variation of I. The impacts of the processes on labor markets can be

decomposed into different effects. Each of these effects are described in the next

paragraphs.

Productivity and Substitution Effects. The first and second terms in labor

demands correspond respectively to the traditional productivity and substitution

effects. The productivity effect arises when production costs decrease due to the

processes, which gives incentives to producers to demand more workers. The

productivity effect also affects the quantities of factors allocated on tasks. A

decrease in production costs increases the production of tasks. As a result more

8



workers are demanded on all tasks and wages increase. The substitution effect

affects the tasks relative prices. When the price of a task increases relatively

to the other tasks prices its relative demand decreases. These effects cannot be

represented on the figure 2, since they do not shape the sets of tasks allocated to

factors.

High-Skill Biased Technological Change Effect. High-skill biased techno-

logical change corresponds to an exogeneous increase in γ. Equation (15) shows

that an increase in γ decreases I. When (15) is then inserted into (11) and (12),

the set of tasks allocated to low-skill workers is reduced, whereas the set of tasks

allocated to high-skill workers is extended. As a result, the demand of low-skill

workers decreases and the demand of high-skill workers increases. Figure 3 illus-

trates this effect following the example presented in Figure 2.

Figure 3: High-Skill Biased Technological Change Effect

Displacement Effect. Robotization extends the set of tasks produced by robots

and reduces the set of tasks produced by low-skill workers. It affects labor markets

by the importance of dθ. Equation (11) shows that an increase in θ decreases the

demand of low-skill workers. Figure 4 illustrates the displacement effect following

the example presented in Figure 2.

Ripple Effect. Due to the displacement effect, the wage of low-skill workers de-

creases, and their productivity / cost ratios increase for all tasks. Indeed, Equation

(15) shows that a decrease in WL increases I. The set of tasks produced by low-

skill workers is extended, whereas the set of tasks produced by high-skill workers
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Figure 4: Displacement Effect

is reduced. This effect impacts labor markets by the importance of dI, similarly to

the high-skill biased technological change effect. While high-skill biased techno-

logical change puts downward pressure on I, robotization puts upward pressure,

so that the total effect of both processes is undetermined. This “ripple effect”,

already put forward in the literature (Acemoglu and Restrepo 2018, 2022b), thus

acts as a counter-balancing force to high-skill biased technological change in the

determination of the level of I. Figure 5 illustrates a ripple effect following the

displacement effect presented in Figure 4.

Figure 5: Ripple Effect

The next proposition characterizes the equilibrium change in high-skill em-

ployment.
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Proposition 3. Under Assumptions 1 and 2:

d lnNH = Λγd ln γ − Λθdθ (16)

Proof. See Appendix A1.2.

Λγ ≡ ∂ lnNH

∂ ln γ
is the elasticity of high-skill employment to the productivity of

high-skill workers, and −Λθ ≡ ∂ lnNH

∂θ
is the semi-elasticity of high-skill employ-

ment to the threshold of robotization possibilities θ. Equation (16) is a tractable

object that can be used for the explanation of the unbalanced changes in high-skill

employment depicted by Figure 1. In the commuting zones that were not exposed

to robots, i.e. the commuting zones with a low value of dθ, high-skill workers

were allocated on additional tasks initially performed by low-skill workers due to

high-skill biased technological change, which had then no counter-balancing forces.

In the exposed commuting zones, i.e. the commuting zones with a high value of

dθ, robotization decreased the wage of low-skill workers due to the displacement

effect, and thus maintained their comparative advantage for the tasks they were

initially performing. This cancelled out the effects of high-skill biased technologi-

cal change, prevented the creation of high-skill jobs, and thus reduced the change

in high-skill employment. The aim of the rest of the paper is to quantify these

effects.

2.3 Empirical Specification

Equation (16) can be turned into a reduced-form model to estimate the relation-

ship between robotization and high-skill employment. However it is unsuitable

because dθ is not observable. In the literature the usual proxy of dθ is the ex-

posure to robots, which is observable. It is defined as the change in the stock of

robots per worker, adjusted to changes in output. It is obtained by dividing the

differential of the demand for robots, given in Appendix A1.1 by Equation (A7),

by the overall employment:

E ≡ dM

N
− M

αN
d lnY =

m(θ)

N
dθ (17)

where N denotes the overall employment. Inserting (17) in (16) leads to:

d lnNH = Λγd ln γ − ΛEE (18)

where −ΛE can be interpreted as the isolated impact of the exposure to robots

on the change in high-skill employment. Finally, I follow the literature and choose
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to consider employment-to-population ratios instead of employment levels. Thus

a reduced-form equivalent of (18) is:

dNHc = β0 + β1Ec + β2Γc + ϵc (19)

where dNHc denotes the 2000-2014 change in the high-skill employment-to-

population ratio of the commuting zone c ∈ C; Ec denotes the 2000-2014 exposure

to robots; Γc is the vector of covariates; β0 is the intercept, which captures the

effect of high-skill biased technological change common to all commuting zones;

β1 is the average impact of the exposure to robots on the change in high-skill

employment, which is expected to be negative; β2 is the vector of coefficients

associated to covariates; and ϵc is the error term specific to the commuting zone

c.

3 Data

3.1 High-Skill Employment-to-Population Ratio

To measure high-skill employment, I use data from the 2000 census and the 2014

American Community Survey (ACS). I measure the high-skill employment-to-

population ratio as 1) the number of non-self-employed workers in high-skill occu-

pations per capita (1990 census occupation codes : 4-234); and 2) the number of

non-self-employed college-educated workers per capita (henceforth college workers,

census education detailed codes : 81-116). Figure 6 presents the distribution of

the 2000-2014 change in high-skill employment-to-population ratio across the 722

continental commuting zones (excluding the states of Alaska and Hawaii). Figure

6a and Figure 6b give respectively results for high-skill occupations and college

workers. The population-weighted means of the changes in the employment-to-

population ratios of high-skill occupations and college workers are respectively 1.18

and 2.48. Both distributions exhibit large dispersions, coefficients of variation are

0.58 for high-skill occupations and 0.36 for college workers.

3.2 Exposure to Robots

I follow AR2020 and proxy robotization by the exposure to robots. The empirical

expression of the exposure to robots is:

Ec =
∑
j∈J

ℓ2000c,j APRj (20)
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(a) (b)

Figure 6: Distribution of the Change in High-Skill Employment-to-Population

Ratio across US Commuting Zones

Source : Author’s own calculations, 2000 census, 2014 American Community Survey.

with

APRj =
M2014

j −M2004
j

N2000
j

−
M2004

j

N2000
j

Y 2014
j − Y 2000

j

Y 2000
j

(21)

where ℓc,j ≡ Nc,j

Nc
is the share of workers working in industry j ∈ J in the

commuting zone c; and APRj is the adjusted penetration of robots of the industry

j, that is the change in the stock of robots per thousand workers of this industry

adjusted to change in output. ℓc,j is computed with data from the 2000 census, and

APRs come from AR2020. APRs are computed with data from the IFR, which

contains data on US stocks of robots for 19 industries and for all years between

2004 and 2014 (see Figure A1 in Appendix A3 for further details about the IFR

industries). The original measures are built on the US industrial employments of

1990. I divide them by N2000
j /N1990

j to obtain Equation (21). I follow the authors

and rescale their measures into a 14-year equivalent change by multiplying (20) by

a factor 1.4. The exposure to robots of a commuting zone is thus a weighted mean

of the changes in the industrial stocks of robots per thousand workers, where the

weights are its shares of employment in the different industries. Its expression is

similar to Equation (17) but differs since the model makes simplifying assumptions

by aggregating all industries into one representative industry. Figure 7 presents

the distribution of the 2000-2014 exposure to robots across the commuting zones.

The distribution is positively skewed, with a population-weighted mean of 1.22.

I assume that the exposure to robots is correlated with unobserved character-

istics of commuting zones, captured by ϵc. For example wage pushes of unions

13



Figure 7: Distribution of the Exposure to Robots across US Commuting Zones

Source : Author’s own calculations, AR2020, 2000 census.

enhance incentives for robots adoption and discourage employment. Under this

assumption the exposure to robots has to be instrumented. AR2020 uses an instru-

ment built as Equation (20) on a group of European countries. Indeed, between

2000 and 2014 the APRs of the US and European industries were significantly

correlated. In particular the authors identify six European countries, namely

Denmark; Finland; France; Germany; Italy and Sweden, that exhibit robotization

trends similar to those of the US but with a greater intensity, which implies that

these countries are the closest to the robotization possibilities frontier. For this

reason I instrument the US exposure to robots by an EU exposure to robots built

on these countries. The identifying assumption is thus that the robotization of

the European countries impacts all commuting zones in a similar fashion. The

instrument is:

EEUc =
∑
j∈J

ℓ1990c,j APREUj (22)

with

APREUj =
1

6

∑
q∈Q

{
M2014

j,q −M2000
j,q

N2000
j,q

−
M2000

j,q

N2000
j,q

Y 2014
j,q − Y 2000

j,q

Y 2000
j,q

}
(23)

where Q = {Denmark,Finland,France,Germany, Italy, Sweden}. European

APRs are means of the changes in the stocks of robots per thousand workers

of the European countries. In order to avoid any mechanical correlation with the

US exposure to robots, the weights used to compute the EU exposure to robots
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are the 1990 industrial shares of employment. The EU exposure to robots of a

commuting zone is thus the one it would have in 2000 if it had followed the Eu-

ropean trend, depending on its industrial specialization of 1990. Table 1 presents

summary statistics of the exposure to robots and high-skill employment.

3.3 Covariates

I control for different effects that potentially impacted robots adoption or high-skill

employment between 2000 and 2014. Firstly, I add a set of demographic covari-

ates: the log of the population, the share of females, shares of race groups, shares

of education groups and the share of individuals above 65 years old. Indeed Ace-

moglu and Restrepo (2022a) shows that the demographic profile of a commuting

zone can affect its propensity to adopt robots. Secondly, I add covariates related

to the manufacturing industry to disentangle the manufacturing-specific trends

and the effects of robotization: the share of workers in manufacturing industries,

the share of females in manufacturing industries, and the share of employment

in light manufacturing industries, namely textile and paper-publishing-printing

industries. Thirdly, I add the share of workers in routine-intensive occupations,

namely production; transport; sales; administrative; and clerical occupations. The

literature globally argues that automation technologies mainly displace routine-

intensive workers, so that automation is globally observed in the commuting zones

with the highest shares of routine-intensive occupations (Autor et al. 2003). The

previously cited covariates are computed with data from the 2000 census. Fourthly,

I control for the impacts of Chinese imports on labor markets, which were signif-

icant (Autor et al. 2013, 2021). I include the exposures to Chinese imports of

Autor et al. (2021), which concludes the list of the baseline covariates. Finally

a group of specifications, designed to check the robustness of the baseline results,

assess whether the effects of robotization on the change in high-skill employment

are different from the effects of the more intensive use of other types of capital.

I include measures of exposures to capital, IT capital, softwares and value added

that are built similarly to the exposure to robots. I use data from the EUKLEMS

on the usage of the different types of capital by US industries.
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Table 1: Summary Statistics for the Main Variables

Variable Mean Standard Error Min 1st Quartile Median 3rd Quartile Max

2000-2014 Exposure to Robots (US) 1.22 1.06 0.10 0.66 0.97 1.30 7.79

2000-2014 Exposure to Robots (EU) 0.91 0.79 0.17 0.48 0.69 1.01 4.93

2000 High-skill Occupations Emp-to-Pop Ratio 7.94 2.48 2.03 6.14 7.82 9.65 14.17

2000 College Workers Emp-to-Pop Ratio 8.78 2.98 1.79 6.60 8.54 10.57 16.47

2000-2014 Change in High-skill Occupations Emp-to-Pop Ratio 1.18 0.68 −1.33 0.75 1.17 1.60 4.21

2000-2014 Change in College Workers Emp-to-Pop Ratio 2.48 0.89 −0.60 1.95 2.40 3.05 5.48

2000 High-skill Occupations Employment (stats in log) 12.59 12.79 3.28 10.31 11.74 13.03 14.05

2000 College Workers Employment (stats in log) 12.71 12.92 3.63 10.28 11.89 13.16 14.12

2000-2014 Change in Log High-skill Occupations Employment 26.56 12.47 −39.18 18.66 26.10 33.82 87.13

2000-2014 Change in Log College Workers Employment 38.33 12.78 −1.34 29.58 36.15 45.12 111.00

Notes: All the statistics are computed over the 722 continental commuting zones (without Alaska and Hawaii) and weighted by population. Employment-

to-population ratios and changes in log are given as percentage points.

4 Empirical Results

4.1 Baseline Results

Table 2 presents the baseline IV estimates of Equation (19). The relationship

between the exposure to robots and the change in high-skill employment was

negative and robust between 2000 and 2014. The estimates in Columns 3 and 6

indicate that the adoption of one robot per thousand workers reduced the change in

the high-skill employment-to-population ratio by 0.18 to 0.24 percentage points in

average. In 2000 there were nearly 210000 thousand people in the US. The average

reduction of high-skill employment is thus (0.0018 + 0.0024)/2 × 210000 ≈ 441

thousand. There were approximately 120 thousand robots installed between 2000

and 2014, which implies that the number of prevented high-skill job creations

per additional robot is 441/120 ≈ 4. AR2020 and Aghion et al. (2019) find

respectively that each robot destroyed 6 jobs in the US between 1990 and 2007

and 11 jobs in France between 1994 and 2014. The magnitude of 4 is in line

with these estimates but seems slightly overestimated with regard to the relative

proportion of high-skill workers. The magnitudes are homogeneous within both

groups of workers, and are not statistically different between them. This result is

encouraging since the impact I aim to assess is expected to be constant whether

skill is proxied by the occupation or the educational level.

The theoretical model indicates that the intercept captures the average high-

skill biased technological change. In the most parsimonious specifications the in-

tercept is positive as expected and significant at the 1% confidence level. However

it becomes non-significant as more covariates are added. This suggests that a range
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of covariates exhibit high correlations with high-skill biased technological change.

For example, the commuting zones with the highest shares of high-educated work-

ers are probably the most likely to adopt high skill biased technologies. This would

explain why the intercept becomes non-significant when demographic covariates

are added. In the next paragraphs I present additional specifications that aim to

capture other specific effects.

Table 2: Impact of the Exposure to Robots on the Change in the High-Skill

Employment-to-Population Ratio

High-skill Occupations College Workers

(1) (2) (3) (4) (5) (6)

Intercept 1.46∗∗∗ −0.27 −0.24 2.85∗∗∗ −3.14 −0.12

(0.11) (3.24) (4.09) (0.20) (3.39) (4.22)

Inst. US Exp. to Robots −0.18∗∗∗ −0.19∗∗∗ −0.18∗∗∗ −0.29∗∗∗ −0.26∗∗∗ −0.24∗∗∗

(0.05) (0.04) (0.05) (0.08) (0.05) (0.06)

First-Stage Coefficient 1.27∗∗∗ 1.27∗∗∗ 1.13∗∗∗ 1.27∗∗∗ 1.27∗∗∗ 1.13∗∗∗

F-statistic 813 415 426 813 415 426

Adj. R2 0.20 0.22 0.22 0.34 0.44 0.44

Num. obs. 722 722 722 722 722 722

Covariates

Division fixed-effects ✓ ✓ ✓ ✓ ✓ ✓

Demographic ✓ ✓ ✓ ✓

Manuf., Routine, Chinese Imports ✓ ✓

Notes: Estimates of the impact of the exposure to robots on the high-skill employment-to-population ratio.

Columns 1-3 give results for high-skill occupations and Columns 4-6 give results for college workers. Regressions

are weighted by the population of 2000. One observation is a commuting zone, so that I have 722 observations for

all regressions. The specifications in Columns 1 and 4 only include census division fixed-effects. The specifications

in Columns 2 and 5 add demographic covariates of 2000: the log of the population; the share of female; the shares

of hispanics, whites, blacks, and asians; the shares of workers who did not attain college, who obtained a college

or a professional degree, and who obtained a master or a PhD degree; and the share of the population that is

more than 65 years old. The specifications in Columns 3 and 6 add the share of workers in routine-intensive

occupations, the share of employment in manufacturing, the share of female workers in manufacturing, the share

of employment in light manufacturing, and the exposure to Chinese imports. Standard errors that are robust

against heteroskedasticity and clustered by state are given in parenthesis. The coefficients with *** are significant

at the 1% confidence level; with ** are significant at the 5% confidence level; and with * are significant at the

10% confidence level.

4.2 Robustness Checks

Table 3 presents the stacked-differences estimates. The specifications with stacked

differences are designed to control for time-specific effects, in particular the effects

of the Great Recession. I split the baseline period into three subperiods : 2000-

2007 a period of slow recovery after the recession of 2000; 2007-2010, that covers

the Great Recession; and 2010-2014 the recovery following the Great Recession.

All the specifications contain time fixed effects, which give estimates relatively

to the subperiod 2000-2007. Estimates are negative and remain robust when
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covariates are added. The magnitudes are not statistically different from the

baseline magnitudes. This suggests that the impact of robotization on the change

in high-skill employment was not significantly affected by the Great Recession.

The coefficient associated with the dummy of the 2007-2010 period is negative,

robust, and exhibit magnitudes much greater than the magnitudes of the impact of

robotization. The estimates in Columns 3 and 6 indicate that the Great Recession

reduced the change in high-skill employment by 0.49 to 1.28 percentage points

compared to the pre-recession period. The coefficient associated with the dummy

of the 2010-2014 period is positive and significant for high-skill occupations, but

not significant for college workers. This result suggests that the employment of

workers in high-skill occupations recovered faster than the employment of college

workers.

Table 3: Impact of the Exposure to Robots on the Change in the High-Skill

Employment-to-Population Ratio: Stacked-Differences

High-skill Occupations College Workers

(1) (2) (3) (4) (5) (6)

Inst. US Exp. to Robots −0.17∗∗∗ −0.19∗∗∗ −0.15∗∗∗ −0.22∗∗∗ −0.25∗∗∗ −0.24∗∗∗

(0.03) (0.04) (0.04) (0.06) (0.06) (0.06)

Period: 2007-2010 −0.46∗∗∗ −0.44∗∗∗ −0.49∗∗∗ −1.21∗∗∗ −1.17∗∗∗ −1.28∗∗∗

(0.07) (0.07) (0.09) (0.08) (0.08) (0.09)

Period: 2010-2014 0.55∗∗∗ 0.57∗∗∗ 0.54∗∗∗ −0.01 −0.02 −0.09

(0.06) (0.06) (0.06) (0.07) (0.07) (0.07)

First-Stage Coefficient 0.99∗∗∗ 0.96∗∗∗ 0.87∗∗∗ 0.99∗∗∗ 0.96∗∗∗ 0.87∗∗∗

First-Stage F-statistic: 845 474 485 845 474 485

Adj. R2 0.37 0.38 0.38 0.48 0.49 0.50

Num. obs. 2166 2166 2166 2166 2166 2166

Covariates

Division and time fixed-effects ✓ ✓ ✓ ✓ ✓ ✓

Demographic ✓ ✓ ✓ ✓

Manuf., Routine, Chinese Imports ✓ ✓

Notes: Stacked-differences estimates of the impact of the exposure to robots on the high-skill employment-to-

population ratio. Columns 1-3 give results for high-skill occupations and Columns 4-6 give results for college

workers. There are 3 subperiods : 2000-2007, 2007-2010, and 2010-2014. The reference subperiod is 2000-2007.

Regressions are weighted by the population at the date opening the subperiod. One observation is a commuting

zone / period combination, so that I have 722 × 3 = 2166 observations for all regressions. The specifications

in Columns 1 and 4 include census division and time fixed effects. The specifications in Columns 2 and 5 add

demographic covariates of starting-dates: the log of the population; the share of female; the shares of hispanics,

whites, blacks, and asians; the shares of workers who did not attain college, who obtained a college or a professional

degree, and who obtained a master or a PhD degree; and the share of the population that is more than 65 years

old. The specifications in Columns 3 and 6 add the share of workers in routine-intensive occupations, the share

of employment in manufacturing, the share of female workers in manufacturing, the share of employment in light

manufacturing, and the exposure to Chinese imports. Standard errors that are robust against heteroskedasticity

and clustered by state are given in parenthesis. The coefficients with *** are significant at the 1% confidence

level; with ** are significant at the 5% confidence level; and with * are significant at the 10% confidence level.

Table 4 presents estimates analogous to those of Table 2 with four additional
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covariates : the exposures to capital, IT capital, softwares and value added. These

specifications are designed to disentangle the effects of robotization and the effects

of the more intensive use of capital. The estimates are similar to the baseline

estimates, and I find no significant effect of the more intensive use of capital on

the high-skill employment-to-population ratio. This indicates that the effects of

robotization on the change in high-skill employment were not confounded with

the effects of the more intensive use of non-robot capital.

Table 4: Impact of the Exposure to Robots on the Change in the High-Skill

Employment-to-Population Ratio: Controlling for Exposures to Capital, IT Cap-

ital, Softwares and VA

High-skill Occupations College Workers

(1) (2) (3) (4) (5) (6)

Inst. US Exp. to Robots −0.16∗∗∗ −0.22∗∗∗ −0.24∗∗∗ −0.18∗∗∗ −0.27∗∗∗ −0.27∗∗∗

(0.04) (0.05) (0.07) (0.05) (0.05) (0.07)

Exp. to Capital 0.01 0.01 0.02 0.02 0.01 0.01

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Exp. to IT Capital 0.56 −4.34 −6.82 3.44 −3.88 −4.74

(2.73) (4.09) (6.11) (2.72) (4.48) (5.80)

Exp. to Softwares −0.21 0.29 0.98 −0.14 0.66 1.04

(0.58) (0.90) (1.58) (0.60) (0.91) (1.48)

Exp. to Value Added −0.00 0.03 0.04 −0.03∗∗ 0.03 0.03

(0.01) (0.02) (0.03) (0.01) (0.02) (0.03)

First-Stage Coefficient 1.23∗∗∗ 1.25∗∗∗ 1.11∗∗∗ 1.23∗∗∗ 1.25∗∗∗ 1.11∗∗∗

First-Stage F-statistic: 706 417 435 706 417 435

Adj. R2 0.22 0.24 0.23 0.40 0.44 0.44

Num. obs. 722 722 722 722 722 722

Covariates

Division fixed-effects ✓ ✓ ✓ ✓ ✓ ✓

Exp. Capital, IT Capital, Soft., VA ✓ ✓ ✓ ✓ ✓ ✓

Demographic ✓ ✓ ✓ ✓

Manuf., Routine, Chinese Imports ✓ ✓

Notes: Estimates of the impact of the exposure to robots on the high-skill employment-to-population ratio.

Columns 1-3 give results for high-skill occupations and Columns 4-6 give results for college workers. Regressions

are weighted by the population of 2000. One observation is a commuting zone, so that I have 722 observations for

all regressions. The specifications in Columns 1 and 4 include census division fixed-effects, and the exposures to

capital, IT capital, softwares, and value added. The specifications in Columns 2 and 5 add demographic covariates

of 2000: the log of the population; the share of female; the shares of hispanics, whites, blacks, and asians; the shares

of workers who did not attain college, who obtained a college or a professional degree, and who obtained a master

or a PhD degree; and the share of the population that is more than 65 years old. The specifications in Columns 3

and 6 add the share of workers in routine-intensive occupations, the share of employment in manufacturing, the

share of female workers in manufacturing, the share of employment in light manufacturing, and the exposure to

Chinese imports. Standard errors that are robust against heteroskedasticity and clustered by state are given in

parenthesis. The coefficients with *** are significant at the 1% confidence level; with ** are significant at the 5%

confidence level; and with * are significant at the 10% confidence level.

Table 5 presents the estimates when I exclude the outliers, namely the top 1%

commuting zones with the highest exposures to robots. The aim of these spec-

ifications is to assess whether the outliers drive the baseline results. Estimates
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are negative and robust, but exhibit magnitudes greater than the baseline mag-

nitudes. This indicates that the baseline qualitative results are not driven by the

outliers, and the relationship between robotization and the change in high-skill

employment is not linear. Indeed Figure 1 indicates that the relationship is rather

inverse. Removing outliers thus increases the magnitudes of the slopes of the

regression lines.

Table 5: 2000-2014 Impact of the Exposure to Robots on the Change in the High-

Skill Employment-to-Population Ratio: Removing Outliers

High-skill Occupations College Workers

(1) (2) (3) (4) (5) (6)

Inst. US Exp. to Robots −0.25∗∗∗ −0.25∗∗∗ −0.25∗∗ −0.50∗∗∗ −0.40∗∗∗ −0.40∗∗∗

(0.08) (0.08) (0.12) (0.09) (0.07) (0.11)

First-Stage Coefficient 1.20∗∗∗ 1.20∗∗∗ 1.06∗∗∗ 1.20∗∗∗ 1.20∗∗∗ 1.06∗∗∗

First-Stage F-statistic 446 264 268 446 264 268

Adj. R2 0.20 0.22 0.21 0.35 0.44 0.44

Num. obs. 714 714 714 714 714 714

Covariates

Division fixed-effects ✓ ✓ ✓ ✓ ✓ ✓

Demographic ✓ ✓ ✓ ✓

Manuf., Routine, Chinese Imports ✓ ✓

Notes: Estimates of the impact of the exposure to robots on the high-skill employment-to-population ratio when

outliers are removed. Columns 1-3 give results for high-skill occupations and Columns 4-6 give results for college

workers. Regressions are weighted by the population of 2000. One observation is a commuting zone among

the bottom 99% commuting zones with the lowest exposures to robots, so that I have 714 observations. The

specifications in Columns 1 and 4 only include census division fixed-effects. The specifications in Columns 2 and

5 add Demographic covariates of 2000: the log of the population; the share of female; the shares of hispanics,

whites, blacks, and asians; the shares of workers who did not attain college, who obtained a college or a professional

degree, and who obtained a master or a PhD degree; and the share of the population that is more than 65 years

old. The specifications in Columns 3 and 6 add the share of workers in routine-intensive occupations, the share

of employment in manufacturing, the share of female workers in manufacturing, the share of employment in light

manufacturing, and the exposure to Chinese imports. Standard errors that are robust against heteroskedasticity

and clustered by state are given in parenthesis. The coefficients with *** are significant at the 1% confidence

level; with ** are significant at the 5% confidence level; and with * are significant at the 10% confidence level.

Table 6 presents estimates of the impact of the exposure to robots on the

change in the log of the hourly wage of high-skill workers. Hourly wages are

computed with data from the 2000 census and the 2014 ACS. Both samples are

trimmed so that the lowest nominal wages correspond to the federal minimum

wages ($5.15 in 2000 and $7.25 in 2014), and the highest nominal labor incomes

correspond to 1.5 times the census top codes ($175000 in 2000 and the 99.5th

percentile in 2014). As in Acemoglu and Autor (2011) I split each commuting

zone into 240 demographic cells. Demographic cells are defined over gender, six

age groups (15-25, 26-35, 36-45, 46-55, 56-65, +65), four race groups (white, black,

asian, other), and five education groups (less than high school, high school, some
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college, college or pro, master or PhD). The estimates in Columns 2 and 5 suggest

that the adoption of one robot per thousand workers reduced the change in the

hourly wage of high-skill workers by 1.73% to 2.82%. The negative relationships

measured for both employment and wage suggest that robotization impacted the

demand side of the labor market and not the supply side, as indicated by the

theoretical analyses. Table A1 in Appendix A3 provides estimates of the impact

of the exposure to robots on the change in additional labor market outcomes,

which comfort the baseline results.

Table 6: Impact of the Exposure to Robots on the Change in the High-Skill Hourly

Wage

High-skill Occupations College Workers

(1) (2) (3) (4) (5) (6)

Inst. US Exp. to Robots −2.36∗∗∗ −1.73∗∗∗ −1.30∗ −2.94∗∗∗ −2.82∗∗∗ −2.00∗∗

(0.42) (0.46) (0.71) (0.58) (0.61) (0.86)

First-Stage Coefficient 1.26∗∗∗ 1.13∗∗∗ 1.07∗∗∗ 1.26∗∗∗ 1.13∗∗∗ 1.07∗∗∗

First-Stage F-statistic: 2209 3812 1950 2209 3812 1950

Adj. R2 0.19 0.19 0.19 0.27 0.28 0.27

Num. obs. 40892 40892 40389 24064 24064 23781

Covariates

Fixed-Effects ✓ ✓ ✓ ✓ ✓ ✓

Exp. Capital, IT Capital, Soft., VA ✓ ✓ ✓ ✓

Demographic ✓ ✓ ✓ ✓

Manuf., Routine, Chinese Imports ✓ ✓ ✓ ✓

Notes: Estimates of the impact of the exposure to robots on the change in the log of the hourly wage of

high-skill workers. Columns 1-3 give results for high-skill occupations and Columns 4-6 give results for college

workers. Regressions are weighted by the 2000 quantity of wage earners in each commuting zone / demographic

cell combination. One observation is a commuting zone / demographic cell combination. Demographic cells are

defined over gender, 6 age groups (15-25, 26-35, 36-45, 46-55, 56-65, +65), 4 race groups (white, black, asian,

other), and 5 education groups (less than high school, high school, some college, college or pro, master or PhD).

The specifications in Columns 1 and 4 include census division and demographic cell fixed-effects. The specifications

in Columns 2 and 5 add the log of population, the shares of female, population that is more than 65 years old,

hispanics, whites, blacks, and asians; the shares of workers who did not attain college, who obtained a college

or a professional degree, and who obtained a master or a PhD degree; the shares of workers in routine-intensive

occupations, workers in manufacturing, female workers in manufacturing, workers in light manufacturing; the

exposures to Chinese imports, capital, IT capital, softwares and value added. The specifications in Columns 3

and 6 exclude the top 1% commuting zones with the highest exposures to robots. Standard errors that are robust

against heteroskedasticity and clustered by state are given in parenthesis. The coefficients with *** are significant

at the 1% confidence level; with ** are significant at the 5% confidence level; and with * are significant at the

10% confidence level.

5 Magnitude of the Ripple Effect

The empirical results presented in the previous section provide magnitudes for the

total impact of robotization on the change in high-skill employment. However they

do not provide any information about the importance of the ripple effect among
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the five forces described in Section 2. This section presents a quantitative exercise

that aims to decompose the total impact and assess the importance of the ripple

effect.

I calibrate the model to fit the US economy of 2000 and the unbalanced changes

in the employment of high-skill occupations of 2000-2014 (the calibration for col-

lege workers returns a similar decomposition). More precisely the model is cal-

ibrated for two fictive economies: an average commuting zone that exhibits the

average exposure to robots; and a “deviating” commuting zone that exhibits the

average exposure to robots plus one standard deviation. The model should then

return 1) the average value of the change in the employment-to-population ratio

of high-skill occupations for the average commuting zone, that is 1.18 percentage

point (see Table 1); and 2) 1.18 − 0.18 × 1.06 = 0.99 percentage points for the

deviating commuting zone, where −0.18 corresponds to the impact of the expo-

sure to robots on the change in the employment-to-population ratio of high-skill

occupations measured in Section 4 and 1.06 is the standard error of the expo-

sure to robots. Both commuting zones have identical initial parameters so that

the differences observed between the evolutions of their labor markets cannot be

imputed to differences in their initial parameters.

The chosen parameters are as follows: α = 67% which matches the usual share

of capital; γ is set to 0.68 so that the productivity gap between skills is identical

to the skill premium; d ln γ = 0.099 which implies a change in the average high-

skill employment-to-population ratio of 1.18 percentage point as indicated by the

data (see Table 1); δ = 0.01 which implies an initial high-skill employment-to-

population ratio of 0.08; ε = 0.43 which implies a Frisch macro-elasticity of labor

supply of 2.30 (Chetty et al. 2011); ϕ = 58 which implies a productivity-cost ratio

of robots 1.30 times greater than the productivity-cost ratio of low-skill workers

(this target ensures that Assumption 1 holds with a magnitude in line with the

estimates of BCG 2015); θ = 0.0625 which implies a deviating change in the high-

skill employment-to-population ratio of 0.99 percentage points; dθAvg = 0.108

which implies an average exposure to robots of 1.22; dθDev = 0.203 which implies

a deviating exposure to robots of 1.22+1.06 = 2.28; A, K and BL are normalized

to 1 so that initial values of the output, the capital price and the low-skill wage are

specified as references; AL = 0.405 which implies an initial low-skill employment-

to-population ratio of 0.21; BH = 2.56 which implies a skill premium of 1.70; and

AM = 59 which implies an initial number of robots per thousand workers of 0.70

as indicated by the IFR data. Calibration choices are summarised in Table 7.

I compute the equilibrium and identify each effect according to the demand of
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Table 7: Model Calibration

Parameter Value Target / Source

HOUSEHOLDS :

ε Inverse of the wage elasticity of labor sup-

ply

0.43 Chetty et al. (2011)

BL Desutility of work for low-skill workers 1 Normalization, WL free

BH Desutility of work for high-skill workers 2.56 WH/WL = 1.70, Source : 2000 census

K Stock of non-robot capital 1 Normalization, R free

TECHNOLOGY :

α Share of tasks in the production process 0.67 RK/Y = 33%

δ Slope of high-skill workers productivity 0.01 NH = 0.08, Source : 2000 census

ϕ Price of robots 58 AM/ϕ
AL/WL

= 1.30, source : BCG (2015)

θ Automation threshold 0.0625 dNHDev = 0.99 percentage points, see Ta-

ble 1

A TFP 1 Normalization, Y free

AM Robots productivity 59 M/(NL +NH) = 7× 10−4, Source : IFR

AL Low-skill workers productivity 0.405 NL = 0.21, Source : 2000 census

γ High-skill workers productivity on the first

task

0.68 AH/AL = WH/WL

EXOGENEOUS PROCESSES :

dθAvg Robotization in the average commuting

zone

0.108 EAvg = 1.22 (considering thousands of

workers), see Table 1

dθDev Robotization in the deviating commuting

zone

0.203 EDev = 2.28 (considering thousands of

workers), see Table 1

d ln γ High-skill biased technological change 0.099 dNHAvg = 1.18 percentage point, see Table

1

Notes: The values presented above are chosen to fit the US economy of 2000 and the unbalanced changes

in high-skill employment of 2000-2014.
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high-skill workers, given by Equation (12). Following the discussions of Section 2,

the productivity effect henceforth includes the substitution effect since both effects

affect the labor demands by the same channels, and the substitution effect cannot

offset the productivity effect. Further details about the decomposition procedure

are provided in Appendix A2. The baseline decomposition is illustrated by Figure

8a. In the average commuting zone, the sum of the “positive” effects, namely the

productivity and high-skill biased technological change effects, was 0.49 + 1.6 =

2.09, and the value of the ripple effect was −0.92. This indicates that the ripple

effect reduced the positive effects by 0.92/2.09 ≈ 44%. This decomposition enables

a comparison between the high-skill biased technological change and the ripple

effects to study the reallocation of tasks between workers. If the sum of both effects

is positive, then tasks are reallocated from low-skill workers to high-skill workers.

Conversely, when the sum is negative, tasks are reallocated from high-skill workers

to low-skill workers. In the average commuting zone the sum of the high-skill

biased technological change and the ripple effects was positive. This indicates that

in average high-skill workers were allocated on additional tasks initially performed

by low-skill workers, and thus gained jobs. In the deviating commuting zone the

ripple effect totally cancelled out the high-skill biased technological change effect,

so that high-skill job creations were less than average. One can also note that high-

skill biased technological change effects were identical in both commuting zones

as expected, while the productivity effect was greater in the deviating commuting

zone due to the more intensive robotization.

Figure 8b presents the analogous decomposition obtained with an extension

that does not include the ripple effect (I becomes exogeneous and takes the value

obtained in the presence of ripple effects; and dI is set to 0). In the absence of

the ripple effect the change in high-skill employment of the deviating commuting

zone is greater than average. Indeed, in such a model the demand of high-skill

workers contains no negative effect, except for the substitution effect which cannot

offset the productivity effect. The ripple effect is thus definitively an interesting

mechanism to understand the facts presented in introduction.

6 Concluding Remarks

This paper contributes to the literature by presenting new evidence that the adop-

tion of robots reduced the change in high-skill employment in US labor markets

between 2000 and 2014. Though these findings are puzzling with regard to the

literature, I show that the results can be explained by a model of tasks, and thus
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(a) (b)

Figure 8: Impact Decomposition

Source : Author’s own calculations.

Notes : Bar plots of the decomposition of the impact of robotization on the change in high-

skill employment. Figure 8a presents the decomposition obtained with the baseline model.

Each bar corresponds to a particular effect described in Section 2. The displacement effect is

omitted since it does not impact the demand of high-skill workers directly. The value of an

effect is indicated within the corresponding bar, so that the sum of all values is the total effect.

The top panel presents the decomposition for the average commuting zone. The bottom panel

presents the decomposition for the deviating commuting zone. Figure 8b presents the analogous

decomposition obtained with an extension that does not contain the ripple effect. Its structure

is similar to the structure of Figure 8b.

25



give new support to such models. Indeed, robotization generates reallocations of

tasks between low-skill and high-skill workers, which can negatively impact the

employment of high-skill workers. These effects are quantified for the first time,

there are two magnitudes to remember: 1) the adoption of one robot per thousand

workers reduced the change in the high-skill employment-to-population ratio by

0.18 − 0.24 percentage points in average, and 2) the negative effect of the real-

location of tasks induced by robotization, namely the ripple effect, reduced the

magnitude of the effects that increase high-skill employment by about 44%.

The model can be extended to explore other potential mechanisms. Indeed,

the ripple effect is probably not the only force that reduces the change in high-skill

employment. In particular, Acemoglu et al. (2020) shows that robots adopters

are among the superstar firms, which have large market shares but small labor

shares (Autor et al. 2020). This suggests that robotization can increase the

concentration of the labor market, which is in line with recent evidence that the

adoption of robots in a firm increases its employment and reduces those of its

competitors (Acemoglu et al. 2020; Acemoglu et al. 2023). This is certainly a

topic for future research.
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Appendices

A1 Appendix of Theoretical Analyses

A1.1 Proof of Proposition 1

I start by characterizing the optimal choices of households. The program of a

household is:

max
Cs,Ns

Us(Cs, Ns) = Cs −Bs
N1+ε

s

1+ε

subject toCs ≤ WsNs +RKs

Ks given

(A1)

Since the budget constraint must bind, the problem can be written as:

max
Cs,Ns

Us(Cs, Ns) = WsNs +RKs −Bs
N1+ε

s

1 + ε
(A2)

The first-order conditions of (A2) give the following labor supplies:

NSupply
L =

(
WL

BL

) 1
ε

(A3)

NSupply
H =

(
WH

BH

) 1
ε

(A4)

Consumption levels are then obtained from binding budget constraints: Cs =

WsNs+RKs. Now I turn to the choices of producers. Let X = exp
∫ 1

0
ln y(i)di be

the quantity of a task-based intermediate good traded on a perfectly competitive

market with a price PX . Then due to the unit elasticity of substitution between

factors the share of non-robot capital in the value added is equal to 1 − α. Con-

sequently the demands of factors are PXX = αY and RK = (1− α)Y . Applying

the same reasoning for the choices of the task-based intermediate good producer I

obtain the following demands of tasks : p(i)y(i) = PXX = αY ∀ i ∈ [0, 1], where

p(i) denotes the price of the task i. Due to Assumption 1 robots are allocated

on all the tasks below θ. Due to Assumption 2 there exists a unique task index

I such that AH(i)
WH

≥ AL

WL
∀ i ≥ I, thus high-skill workers are allocated on all the

tasks above I, what leads to (9). Since tasks are traded on a perfectly competitive

market, their prices are equal to their marginal cost. Therefore:
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p(i) =


ϕA−1

M if i ∈ [0, θ)

WLA
−1
L if i ∈ [θ, I)

WHAH(i)
−1 if i ∈ [I, 1]

(A5)

Hence, inserting (9) and (A5) into the demands of tasks leads to:

m(i) =

αY ϕ−1 if i ∈ [0, θ)

0 else
nL(i) =

αYW−1
L if i ∈ [θ, I)

0 else
nH(i) =

αYW−1
H if i ∈ [I, 1]

0 else

(A6)

Using market clearing conditions leads to:

MDemand = αθY ϕ−1 (A7)

NDemand
L = α(I − θ)YW−1

L (A8)

NDemand
H = α(1− I)YW−1

H (A9)

Dividing (A6) by the aggregate quantities leads to:

m(i) =

M
θ
if i ∈ [0, θ)

0 else
nL(i) =


NL

I−θ
if i ∈ [θ, I)

0 else
nH(i) =


NH

1−I
if i ∈ [I, 1]

0 else

(A10)

Inserting (A10) into (3) leads to:

Y = eα
∫ 1
I lnAH(i)diA

(
AMM

θ

)αθ (
ALNL

I − θ

)α(I−θ) (
NH

1− I

)α(1−I)

K1−α (A11)

The cost function of the final good producer is thus:

Cost = α−α(1− α)−(1−α)e−α
∫ 1
I lnAH(i)diY

A

(
ϕ

AM

)αθ (
WL

AL

)α(I−θ)

W
α(1−I)
H R1−α

(A12)

The final good producer chooses the value of I that minimizes its cost. (10)

is the first-order condition of this cost-minimization problem. The equilibrium

allocation of factors on tasks {m(i), nL(i), nH(i)}i∈[0,1] is thus given by (A10);

equilibrium quantities {CL, CH , NL, NH ,M, Y, {y(i)}i∈[0,1]} are given by binding

budget constraints, (A3), (A4), (A7), (3) and (4); equilibrium prices {R,WL,WH}
are given by the demand of non-robot capital RK = (1 − α)Y , (A8), and (A9);

and I is given by (10).
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A1.2 Proof of Proposition 3

Log-differentiating (A11) and (A7) leads to:

1

α
d lnY = θd lnM + (I − θ)d lnNL + (1− I)(d lnNH + d ln γ) + ln

AM/ϕ

AL/WL

dθ

(A13)

d lnM = d lnY +
dθ

θ
(A14)

Therefore the changes {d lnY, d lnM,d lnNL, d lnNH , d lnWL,d lnWH , dI} are

obtained by solving the linear system consisting of Equations (A13), (A14), (11),

(12), (13), (14), (15) with d ln γ a constant and dθ a free variable. Therefore the

equilibrium changes in the variables are affine functions of dθ, which implies that

d lnNH takes the form of (16).
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A2 Impact Decomposition

The decomposition procedure consists in computing each element of the high-

skill labor demand, given by Equation (12), using the results obtained with the

calibrated model. The values of d lnY , the productivity effect, and d lnWH , the

substitution effect are directly given by the model. However the high-skill biased

technological change effect and the ripple effect still have to be disentangled since

they are confounded in dI. I define the high-skill biased technological change

effect as d lnNH |d lnY=d lnWH=dθ=0, i.e. the change in high-skill employment when

γ changes and Y , WH and θ are held constant. Similarly I define the ripple effect as

d lnNH |d lnY=d lnWH=d ln γ=0, which isolates the impact of robotization on high-skill

employment. Their expressions are then obtained by solving the system consisting

of (11), (12), (13), (14) and (15). The resulting decomposition is:

Total Productivity - Substitution + HSBTC - Ripple

Productivity d lnY

Substitution d lnWH

HSBTC (I − θ)1+ε
ω
d ln γ

Ripple ε
ω
dθ

where ω = ε(1 − θ) + (1 + ε)(I − θ)(1 − I) δ
1+δI

> 0. The high-skill biased

technological change and ripple effects are null in the absence of ripple effect.
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A3 Additional Tables and Figures

Table A1: Impact of the Exposure to Robots on the Change in Additional Labor

Market Outcomes

High-skill Occupations College Workers

(1) (2) (3) (4) (5) (6)

Panel A : Log of Employment Level

Inst. US Exp. to Robots −3.83∗∗∗ −3.75∗∗∗ −2.61∗∗∗ −3.51∗∗∗ −4.09∗∗∗ −2.59∗∗∗

(0.72) (0.80) (0.87) (0.73) (0.88) (0.86)

First-Stage Coefficient 1.27∗∗∗ 1.27∗∗∗ 1.13∗∗∗ 1.27∗∗∗ 1.27∗∗∗ 1.13∗∗∗

F-statistic 813 415 426 813 415 426

Adj. R2 0.29 0.39 0.41 0.30 0.45 0.48

Num. obs. 722 722 722 722 722 722

Panel B : Employment Rate

Inst. US Exp. to Robots −0.25∗∗∗ −0.26∗∗∗ −0.25∗∗∗ −0.39∗∗∗ −0.36∗∗∗ −0.33∗∗∗

(0.07) (0.07) (0.08) (0.10) (0.08) (0.10)

First-Stage Coefficient 1.27∗∗∗ 1.27∗∗∗ 1.13∗∗∗ 1.27∗∗∗ 1.27∗∗∗ 1.13∗∗∗

F-statistic 813 415 426 813 415 426

Adj. R2 0.15 0.17 0.17 0.31 0.37 0.38

Num. obs. 722 722 722 722 722 722

Panel C : Emp-to-Pop Ratio including Self-Employed Workers

Inst. US Exp. to Robots −0.19∗∗∗ −0.18∗∗∗ −0.20∗∗∗ −0.33∗∗∗ −0.29∗∗∗ −0.29∗∗∗

(0.06) (0.05) (0.06) (0.10) (0.05) (0.08)

First-Stage Coefficient 1.27∗∗∗ 1.27∗∗∗ 1.13∗∗∗ 1.27∗∗∗ 1.27∗∗∗ 1.13∗∗∗

F-statistic 813 415 426 813 415 426

Adj. R2 0.23 0.31 0.31 0.38 0.50 0.51

Num. obs. 722 722 722 722 722 722

Covariates

Division fixed-effects ✓ ✓ ✓ ✓ ✓ ✓

Demographic ✓ ✓ ✓ ✓

Manuf., Routine, Chinese Imports ✓ ✓

Notes: Estimates of the impact of the exposure to robots on additional labor market outcomes : the log of

the high-skill employment level (Panel A); the high-skill employment rate, defined as high-skill employment over

working-age population (Panel B); and the high-skill employment-to-population ratio including self-employed

workers (Panel C). Columns 1-3 give results for high-skill occupations and Columns 4-6 give results for college

workers. Regressions are weighted by the population of 2000. One observation is a commuting zone, so that

I have 722 observations for all regressions. The specifications in Columns 1 and 4 only include census division

fixed-effects. The specifications in Columns 2 and 5 add demographic covariates of 2000: the log of the population;

the share of female; the shares of hispanics, whites, blacks, and asians; the shares of workers who did not attain

college, who obtained a college or a professional degree, and who obtained a master or a PhD degree; and the

share of the population that is more than 65 years old. The specifications in Columns 3 and 6 add the share of

workers in routine-intensive occupations, the share of employment in manufacturing, the share of female workers in

manufacturing, the share of employment in light manufacturing, and the exposure to Chinese imports. Standard

errors that are robust against heteroskedasticity and clustered by state are given in parenthesis. The coefficients

with *** are significant at the 1% confidence level; with ** are significant at the 5% confidence level; and with *

are significant at the 10% confidence level.

34



F
ig
u
re

A
1:

A
d
ju
st
ed

P
en
et
ra
ti
on

of
R
ob

ot
s
(A

P
R
)
b
y
In
d
u
st
ry

in
th
e
U
S
an

d
E
u
ro
p
e

S
o
u
rc
e
:
A
R
20
20
.

N
o
te
s
:
A
P
R
s
b
y
in
d
u
st
ry

in
th
e
U
S
an

d
E
u
ro
p
e
(m

ea
n
on

si
x
co
u
n
tr
ie
s
:
D
en
m
a
rk
;
F
in
la
n
d
;
F
ra
n
ce
;
G
er
m
a
n
y
;
It
a
ly

a
n
d
S
w
ed
en
).

A
b
so
lu
te

va
lu
es

a
re

g
iv
en

in
sq
u
ar
e
ro
ot

fo
r
co
n
ve
n
ie
n
ce
.

35



 

TEPP Working Papers 2023 

23.2. Knowledge transmission in the second part of careers: does formal training matter? 

Pierre-Jean Messe, Nathalie Greenan 

23-1. Phantom cycles 

Arnaud Chéron, Bruno Decreuse 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TEPP Working Papers 2022 

22-21. Utility services poverty : addressing the problem of household deprivation in Mayotte 

Dorothée Charlier, Bérangère Legendre, Olivia Ricci 

22-20. The effects of disability benefits on the employment of low-skilled youth : evidence from 

France 

Sylvain Chareyron, Naomie Mahmoudi 

22-19. Does gender equality bargaining reduce child penality? Evidence from France 

Pierre-Jean Messe, Jérémy Tanguy 

22-18. The effect of pro diversity actions on discrimination in the recruitment of large 

companies : a field experiment 

Laetitia Challe, Sylvain Chareyron, Yannick L'Horty, Pascale Petit 

22-17. Impacts of quota policy and employer obligation to adapt workstations on discrimination 

against people with disabilities : lesson from an experiment 

Sylvain Chareyron, Yannick L'Horty, Philomene Mbaye, Pascale Petit 

22-16. Are real merchandise imports per capita a good predictor for the standard of living for 

the small island world : testing for the imports-led growth and the growth-led imports 

hypotheses in panels over the period 1970-2019 

Jean-François Hoarau, Nicolas Lucic 

22-15. Extracting the discrimination components from the callback rates 

Emmanuel Duguet, Loïc Du Parquet, Pascale Petit 

22-14. Strategic debt in a mixed duopoly: the limited liability effect 

Armel Jacques 

22-13. Short-time work policies during the COVID-19 pandemic 

Julien Albertini, Xavier Fairise, Arthur Poirier, Anthony Terriau 

22-12. Immigration and labour market flows 

Andri Chassamboulli, Idriss Fontaine, Ismael Galvez-Iniesta 

22-11. Short-term impact of tropical cyclones in Madagascar : evidence from nightlight data 

Idriss Fontaine, Sabine Garabedian, Maël Jammes 

22-10. The current and future costs of tropical cyclones: A case study of La Réunion 

Idriss Fontaine, Sabine Garabedian, Helene Veremes  

22-9. Wealth and income responses to dividend taxation : Evidence from France 

Marie-Noëlle Lefebvre, Eddy Zanoutene 

22-8. Soccer labour market equilibrium and efficient training of talents 

Marnix Amand, Arnaud Chéron, Florian Pelgrin, Anthony Terriau 

22.7. Using short-term jobs as a way to fin a regular job. What kind of role for local context? 

Fabrice Gilles, Sabina Issehnane, Florent Sari 

22-6. Gender and age diversity. Does it matter for firms’ productivity? 

Laetitia Challe, Fabrice Gilles, Yannick L’Horty, Ferhat Mihoubi 

22-5. How wages respond to the job-finding and job-to-job transition rates?  

Evidence from New Zealand administrative data 

Christopher Ball, Nicolas Groshenny, Özer Karagedikli, Murat Özbilgind, Finn Robinsona 

22-4. Endogenous timing of technological choices of flexibility in a mixed duopoly 

Armel Jacques 

22-3. Reducing ethnic discrimination through formal warning : evidence from two combined 

field experiments 

Sylvain Chareyron, Yannick L'Horty, Souleymane Mbaye, Pascale Petit 

22-2. Cream skimming and Discrimination in access to medical care: a field experiment  

Sylvain Chareyron, Yannick L’horty, Pascale Petit 

22-1. Optimal taxation with multiple incomes and types 

Kevin Spiritus, Etienne Lehmann, Sander Renes, Floris T. Zoutman 



 

TEPP Working Papers 2021 

21-11. Intermittent collusive agreements : antitrust policy and business cycles 
Emilie Dargaud, Armel Jacques 

21-10. Endogenous breadth of collusive agreements : an application to flexible technological 

choices 

Emilie Dargaud, Armel Jacques 

21-9. How to tax different incomes? 

Laurence Jacquet, Etienne Lehmann 

21-8. Does optimal capital taxation under stochastic returns to savings 

Eddy Zanoutene 

21-7. Does the gender mix influence collective bargaining on gender equality? Evidence from 

France 

Anne-Sophie Bruno, Nathalie Greenan, Jérémy Tanguy 

21-6. The effects of the non-financial component of business accelerators 

Fabrice Gilles, Yannick L'Horty, Ferhat Mihoubi 

21-5. Organisational changes and long term sickness absence and injury leave 
Mohamed Ali Ben Halima, Nathalie Greenan, Joseph Lanfranchi 

21-4. The unexplored discriminations towards youth : equal access to goods and services 

David Gray, Yannick L'Horty, Souleymane Mbaye, Pascale Petit 

21-3. The zero effect of income tax on the timing of birth: some evidence on French data 

Nicolas Moreau 

21-2. Tropical cyclones and fertility : new evidence from Madagascar 

Idriss Fontaine, Sabine Garabedian, David Nortes-Martinez, Hélène Vérèmes 

21-1. On the heterogeneous impacts of the COVID-19 lockdown on US unemployment 

Malak Kandoussi, François Langot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TEPP Working Papers 2020 

20-8. COVID-19 mortality and health expenditures across European countries: The positive 

correlation puzzle 

Serge Blondel, Radu Vranceanu 

20-7. Measuring discrimination in the labour market  

Emmanuel Duguet 

20-6. The effects of age on educational performances at the end of primary school: cross-

sectional and regression discontinuity approach applications from Reunion Island 

Daniel Rakotomalala 

20-5. Slowdown antitrust investigations by decentralization 

Emilie Dargaud, Armel Jacques 

20-4. Is international tourism responsible for the pandemic of COVID19? A preliminary 

cross-country analysis with a special focus on small islands 

Jean-François Hoarau 

20-3. Does labor income react more to income tax or means tested benefit reforms?  

Michaël Sicsic 

20-2. Optimal sickness benefits in a principal-agent model 

Sébastien Ménard 

20-1. The specific role of agriculture for economic vulnerability of small island spaces 

Stéphane Blancard, Maximin Bonnet, Jean-François Hoarau 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TEPP Working Papers 2019 

19-8. The impact of benefit sanctions on equilibrium wage dispersion and job vacancies 

Sebastien Menard 

19-7. Employment fluctuations, job polarization and non-standard work: Evidence from 

France and the US  

 Olivier Charlot, Idriss Fontaine, Thepthida Sopraseuth 

19-6. Counterproductive hiring discrimination against women: Evidence from French 

correspondence test 

Emmanuel Duguet, Loïc du Parquet, Yannick L'Horty, Pascale Petit 

19-5. Inefficient couples: Non-minimization of the tax burden among French cohabiting 

couples  

Olivier Bargain, Damien Echevin, Nicolas Moreau, Adrien Pacifico 

19-4. Seeking for tipping point in the housing market: evidence from a field experiment 

Sylvain Chareyron, Samuel Gorohouna, Yannick L'Horty, Pascale Petit, Catherine Ris 

19-3. Testing for redlining in the labor market  

Yannick L’Horty, Mathieu Bunel, Pascale Petit 

19-2. Labour market flows: Accounting for the public sector 

Idriss Fontaine, Ismael Galvez-Iniesta, Pedro Gomes, Diego Vila-Martin 

19-1. The interaction between labour force participation of older men and their wife: 

lessons from France 

Idriss Fontaine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TEPP Working Papers 2018 

18-15. Be healthy, be employed: a comparison between the US and France based on a general 

equilibrium model  

Xavier Fairise, François Langot, Ze Zhong Shang 

18-14. Immigrants' wage performance in the routine biased technological change era: France 

1994-2012 

Catherine Laffineur, Eva Moreno-Galbis, Jeremy Tanguy, Ahmed Tritah 

18-13. Welfare cost of fluctuations when labor market search interacts with financial 

frictions 

Elini Iliopulos, François Langot, Thepthida Sopraseuth 

18-12. Accounting for labor gaps 

François Langot, Alessandra Pizzo 

18-11. Unemployment fluctuations over the life cycle 

Jean-Olivier Hairault, François Langot, Thepthida Sopraseuth 

18-10. Layoffs, Recalls and Experience Rating 

Julien Albertini, Xavier Fairise 

18-9. Environmental policy and health in the presence of labor market imperfections 

Xavier Pautrel 

18-8. Identity mistakes and the standard of proof  

Marie Obidzinski, Yves Oytana 

18-7. Presumption of innocence and deterrence 

Marie Obidzinski, Yves Oytana 

18-6. Ethnic Discrimination in Rental Housing Market: An Experiment in New Caledonia 

Mathieu Bunel, Samuel Gorohouna, Yannick L'Horty, Pascale Petit, Catherine Ris 

18-5. Evaluating the impact of firm tax credits. Results from the French natural experiment 

CICE 

Fabrice Gilles, Yannick L'Horty, Ferhat Mihoubi, Xi Yang 

18-4. Impact of type 2 diabetes on health expenditure: an estimation based on individual 

administrative data 

François-Olivier Baudot , Anne-Sophie Aguadé,Thomas Barnay, Christelle Gastaldi- 

Ménager, Anne Fargot-Campagna 

18-3. How does labour market history influence the access to hiring interviews? 

Emmanuel Duguet, Rémi Le Gall, Yannick L'Horty, Pascale Petit 

18-2. Occupational mobility and vocational training over the life cycle 

Anthony Terriau 

18-1. Retired, at last? The short-term impact of retirement on health status in France 

Thomas Barnay, Eric Defebvre 
 



 

TEPP Working Papers 2017 
 

17-11. Hiring discrimination against women: distinguishing taste based discrimination from 

statistical discrimination  

Emmanuel Duguet, Loïc du Parquet, Pascale Petit 

17-10. Pension reforms, older workers' employment and the role of job separation and 

finding rates in France  

Sarah Le Duigou, Pierre-Jean Messe 

17-9. Healthier when retiring earlier? Evidence from France 

Pierre-Jean Messe, François-Charles Wolff 

17-8. Revisting Hopenhayn and Nicolini's optimal unemployment insurance with job 

search monitoring and sanctions 

Sebastien Menard, Solenne Tanguy 

17-7. Ethnic Gaps in Educational Attainment and Labor-Market Outcomes: Evidence 

from France 

Gabin Langevin, David Masclet, Fabien Moizeau, Emmanuel Peterle 

17-6. Identifying preference-based discrimination in rental market: a field experiment in 

Paris 

Mathieu Bunel, Yannick L’Horty, Loïc du Parquet, Pascale Petit 

17-5. Chosen or Imposed? The location strategies of households 

Emilie Arnoult, Florent Sari 

17-4. Optimal income taxation with composition effects 

Laurence Jacquet, Etienne Lehmann 

17-3. Labor Market Effects of Urban Riots: an experimental assessment 

Emmanuel Duguet, David Gray, Yannick L'Horty, Loic du Parquet, Pascale Petit 

17-2. Does practicing literacy skills improve academic performance in first-year university 

students? Results from a randomized experiment 

Estelle Bellity, Fabrices Gilles, Yannick L'Horty 

17-1. Raising the take-up of social assistance benefits through a simple mailing: evidence 

from a French field experiment 

Sylvain Chareyron, David Gray, Yannick L'Horty 

 



 

TEPP Working Papers 2016 

16-8. Endogenous wage rigidities, human capital accumulation and growth 

Ahmed Tritah 

16-7. Harder, better, faster...yet stronger? Working conditions and self-declaration of 

chronic diseases 

Eric Defebvre 

16-6. The influence of mental health on job retention 

Thomas Barnay, Eric Defebvre 

16-5. The effects of breast cancer on individual labour market outcomes: an evaluation 

from an administrative panel 

Thomas Barnay, Mohamed Ali Ben Halima, Emmanuel Duguet, Christine Le Clainche, 

Camille Regaert 

16-4. Expectations, Loss Aversion, and Retirement Decisions in the Context of the 2009 

Crisis in Europe 

Nicolas Sirven, Thomas Barnay 

16-3. How do product and labor market regulations affect aggregate employment, 

inequalities and job polarization? A general equilibrium approach 

Julien Albertini, Jean-Olivier Hairault, François Langot, Thepthida Sopraseuth 

16-2. Access to employment with age and gender: results of a controlled experiment Laetitia 

Challe, Florent Fremigacci, François Langot, Yannick L'Horty, Loïc Du Parquet, Pascale Petit 

16-1. An evaluation of the 1987 French Disabled Workers Act: Better paying than hiring 

Thomas Barnay, Emmanuel Duguet, Christine Le Clainche, Yann Videau 

 



 

TEPP Working Papers 2015 

15-10. Optimal Income Taxation with Unemployment and Wage Responses: A Sufficient 

Statistics Approach  

Kory Kroft, Kavan Kucko, Etienne Lehmann, Johannes Schmieder 

15-9. Search frictions and (in) efficient vocational training over the life-cycle  

Arnaud Chéron, Anthony Terriau 

15-8. Absenteeism and productivity: the experience rating applied to employer contributions 

to health insurance 

Sébastien Ménard, Coralia Quintero Rojas 

15-7. Take up of social assistance benefits: the case of homeless 

Sylvain Chareyron 

15-6. Spatial mismatch through local public employment agencies. Answers from a French 

quasi-experiment 

Mathieu Bunel, Elisabeth Tovar 

15-5. Transmission of vocational skills at the end of career: horizon effect and technological or 

organisational change 

Nathalie Greenan, Pierre-Jean Messe 

15-4. Protecting biodiversity by developing bio-jobs: A multi-branch analysis with an 

application on French data 

Jean De Beir, Céline Emond, Yannick L'Horty, Laetitia Tuffery 

15-3. Profit-Sharing and Wages: An Empirical Analysis Using French Data Between 2000 and 

2007 

Noélie Delahaie, Richard Duhautois 

15-2. A meta-regression analysis on intergenerational transmission of education: publication 

bias and genuine empirical effect 

Nicolas Fleury, Fabrice Gilles 

15-1. Why are there so many long-term unemployed in Paris?  

Yannick L'Horty, Florent Sari  



 

TEPP Working Papers 2014 

14-14. Hiring discrimination based on national origin and the competition between employed 

and unemployed job seekers 

Guillaume Pierné 

14-13. Discrimination in Hiring: The curse of motorcycle women 

Loïc Du Parquet, Emmanuel Duguet, Yannick L'Horty, Pascale Petit 

14-12. Residential discrimination and the ethnic origin: An experimental assessment in the 

Paris suburbs 
Emmanuel Duguet, Yannick L'Horty, Pascale Petit 

14-11. Discrimination based on place of residence and access to employment  

Mathieu Bunel, Yannick L'Horty, Pascale Petit 

14-10. Rural Electrification and Household Labor Supply: Evidence from Nigeria 

Claire Salmon, Jeremy Tanguy 

14-9. Effects of immigration in frictional labor markets: theory and empirical evidence from 

EU countries 
Eva Moreno-Galbis, Ahmed Tritah 

14-8. Health, Work and Working Conditions: A Review of the European Economic Literature 
Thomas Barnay 

14-7. Labour mobility and the informal sector in Algeria: a cross-sectional comparison (2007-

2012) 
Philippe Adair, Youghourta Bellache 

14-6. Does care to dependent elderly people living at home increase their mental health? 

Thomas Barnay, Sandrine Juin 

14-5. The Effect of Non-Work Related Health Events on Career Outcomes: An Evaluation in 

the French Labor Market 

Emmanuel Duguet, Christine le Clainche 

14-4. Retirement intentions in the presence of technological change: Theory and evidence from 

France 

Pierre-Jean Messe, Eva Moreno-Galbis, Francois-Charles Wolff 

14-3. Why is Old Workers’ Labor Market more Volatile? Unemployment Fluctuations over the 

Life-Cycle 

Jean-Olivier Hairault, François Langot, Thepthida Sopraseuth 

14-2. Participation, Recruitment Selection, and the Minimum Wage 

Frédéric Gavrel 

14-1. Disparities in taking sick leave between sectors of activity in France: a longitudinal 

analysis of administrative data 

Thomas Barnay, Sandrine Juin, Renaud Legal 

 

 

 

 

 

 

 

 



 

TEPP Working Papers 2013 

13-9. An evaluation of the impact of industrial restructuring on individual human capital 

accumulation in France (1956-1993) 

Nicolas Fleury, Fabrice Gilles 

13-8. On the value of partial commitment for cooperative investment in buyer-supplier 

relationship 

José de Sousa, Xavier Fairise 

13-7. Search frictions, real wage rigidities and the optimal design of unemployment insurance 

Julien Albertini, Xavier Fairise 

13-6. Tax me if you can! Optimal nonlinear income tax between competing governments 

Etienne Lehmann, Laurent Simula, Alain Trannoy 

13-5. Beyond the labour income tax wedge: The unemployment-reducing effect of tax 

progressivity 

Etienne Lehmann, Claudio Lucifora, Simone Moriconi, Bruno Van Der Linden 

13-4. Discrimination based on place of residence and access to employment 

Mathieu Bunel, Emilia Ene Jones, Yannick L’Horty, Pascale Petit 

13-3. The determinants of job access channels: evidence from the youth labor market in France 

Jihan Ghrairi 

13-2. Capital mobility, search unemployment and labor market policies: The case of minimum 

wages 

Frédéric Gavrel 

13-1. Effort and monetary incentives in Nonprofit et For-Profit Organizations 

Joseph Lanfranchi, Mathieu Narcy



 

The TEPP Institute 

The CNRS Institute for Theory and Evaluation of Public Policies (the TEPP Institute, FR n°2024 

CNRS) gathers together research centres specializing in economics and sociology: 

 

 L'Equipe de Recherche sur l'Utilisation des Données Individuelles en lien avec la 

Théorie Economique (Research Team on Use of Individuals Data in connection with 

economic theory), ERUDITE, University of Paris-Est Créteil and University of Gustave 

Eiffel 

 Le Centre d'Etudes des Politiques Economiques de l'université d'Evry (Research Centre 

focused on the analysis of economic policy and its foundations and implications), EPEE, 

University of Evry Val d’Essonne 

 Le Centre Pierre Naville (Research on Work and Urban Policies), CPN, University of Evry 

Val d’Essonne 

 Le Groupe d'Analyse des Itinéraires et des Niveaux Salariaux (Group on Analysis of 

Wage Levels and Trajectories), GAINS, University of Le Mans 

 Le Centre de Recherches en Economie et en Management, (Research centre in Economics 

and Management), CREM, University of Rennes 1 et University of Caen Basse-Normandie 

 Le Groupe de Recherche ANgevin en Économie et Management (Angevin Research 

Group in Economics and Management), GRANEM, University of Angers 

 Le Centre de Recherche en Economie et Droit (Research centre in Economics and Law) 

CRED, University of Paris II Panthéon-Assas 

 Le Laboratoire d’Economie et de Management Nantes-Atlantique (Laboratory of 

Economics and Management of Nantes-Atlantique) LEMNA, University of Nantes 

 Le Laboratoire interdisciplinaire d’étude du politique Hannah Arendt – Paris Est, 

LIPHA-PE 

 Le Centre d’Economie et de Management de l’Océan Indien, CEMOI, University of La 

Réunion 




TEPP brings together 230 teacher-researchers and 100 doctoral students. It is both one of the main 

academic operators in the evaluation of public policies in France, and the largest multidisciplinary 

federation of research on work and employment. It responds to the demand for impact assessment of 

social programs using advanced technologies combining theoretical and econometric modeling, 

qualitative research techniques and controlled experiences. 

 

 

 

www.tepp.eu 

 

http://www.tepp.eu/

