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Abstract

Does exposure to tropical cyclones affect fertility? This paper tackles this question
by constructing a panel dataset from geolocated microdata about mothers’ fertility
history along with wind field data generated by tropical cyclones hitting a sample of six
developing during the 1985-2015 period. Using panel, we estimate the causal effect of
tropical cyclone shocks on women’s likelihood of giving birth. We find evidence that the
effect of tropical cyclone exposure on motherhood is significantly negative. In particular,
being exposed to a wind speed cyclone shock decreases the probability of giving birth
by 2.6 points a year after exposure. We also find that the magnitude of the effect varies
with the degree of cyclonic exposure associated to mother’s living environment and
to the number of children ever born. Alternative specifications of our baseline model
provide further insights, as we find: i) a persistent effect of tropical cyclone shocks in the
sense that we do not have evidence of any reversal effect, ii) that recent past exposures
to cyclones is associated with a lower decrease in fertility when exposed and iii) no
evidence of non-linearities in the effect. The estimated effect is shown to be robust when
using alternative formulations of our baseline empirical model.
Keywords: Fertility, Tropical cyclone, Developing countries
JEL classifications: J13, O12, Q54, C23
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1 Introduction

Evidence about the consequences of exposure to cyclonic systems at the individual level is still
scarce (Anttila-Hughes & Hsiang, 2013). The lack of comprehensive microstudies, which could
be explained by strong data requirements, leaves many questions unanswered, in particular
how households reorganize their lives after being impacted by tropical cyclones. Exposure to
tropical cyclones along with the associated destruction has the potential to induce high costs
to households in terms of incomes, livelihoods, crop yields, assets, and loss of life. Arguably,
it is likely that the micro-impacts of such adverse shocks are stronger in countries with almost
inexistent institutional ways of coping, as is probably the case for developing countries (Dessy
et al., 2019). In this context, households have the incentive to diversify their activities, and
children often play a particular role within households (Banerjee & Duflo (2007), Banerjee &
Duflo (2011)). They actively contribute to daily activities by, for example, caring for siblings
or grandparents, participating in housework chores, and even sometimes directly participating
in the labor market (Finlay, 2009).1 In light of this, parents’ decision to have children is
probably altered after being affected by a tropical cyclone (Sellers & Gray, 2019). As a first
piece of evidence, the data used in this paper show that 12% of women who have been exposed
to cyclonic systems give birth the calendar year after the exposure compared to 19% for those
who have not been exposed. Our paper therefore addresses the main following question: Does
exposure to tropical cyclones causally impact fertility?

Understanding how households adjust after being exposed to adverse weather shocks such
as tropical cyclones is of interest to researchers and policymakers alike, especially in the
context of climate change that is expected to modify the frequency and intensity of tropical
cyclones in the near future (IPCC (2019), Knutson et al. (2020)). However, the direction of
these behavioral changes in terms of fecundity is a priori unclear from both a theoretical and
empirical perspective. In theoretical models such as those of Finlay (2009), Pörtner (2014),
and Dessy et al. (2019), the direction of the post-disaster decision ultimately depends on
assumptions about the benefits and costs associated with children. Empirically, an increase
in family size after a natural disaster was found by Nobles et al. (2015), Nandi et al. (2018),
and Finlay (2009), whereas a fall was identified by Evans et al. (2010), Pörtner (2014), Davis
(2017) and Norling (2022). Given the inconclusive nature of the previous studies, the issue of
whether natural disasters affect fertility is still an open empirical question. The main goal of
the paper is to rigorously establish the direction and magnitude of the causal effect of tropical
cyclones on women’s likelihood of giving birth when using high-resolution data on the true
exposure to tropical cyclones experienced on the ground.

1Banerjee & Duflo (2011) and Finlay (2009) indicate that in the absence of insurance mechanisms, children’s
contributions may substitute for standard insurance and allow households to smooth consumption over time.
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While previous studies exploring the effect of natural disasters on fertility mainly focus on
earthquakes, it is likely that their results cannot be extrapolated to the case of cyclonic events.
First, the macro-literature has shown that the consequences of natural disasters on economic
growth are not identical for all kinds of disasters (Fomby et al. (2013), Felbermayr & Gröschl
(2014)). We can therefore conjecture that the magnitude or even the direction of the effect
may also be different for fertility depending on the type of natural disaster (Norling, 2022).
Second, empirical studies on earthquakes mainly adopt a “one-event” approach by studying
the fertility response after an earthquake shock of high intensity (Finlay (2009), Nobles et al.
(2015), Nandi et al. (2018)). Although the measurement of a causal effect in these studies is
undisputed, they do not consider variability in the degree of exposure, the magnitude of the
disaster events or the existence of possible intensification effects. The database constructed
here allows for the investigation of such issues.

We first begin by presenting a simple theoretical framework of parents decisions about
fertility. The model developed, inspired by the works of Ranjan (1999), Finlay (2009) and
Norling (2022), is employed to frame the discussion and the development of empirical model.
In particular, three working assumptions about post-cyclone fertility responses are derived
from the model. The first one suggests that after an adverse shock, such as an exposure
to cyclones, the likelihood of fertility is expected to fall. The second one investigates the
heterogeneous response of fertility for mothers living in cyclone prone areas and those living
in non-prone area. In that respect, the model suggests that the former group should be less
sensitive to cyclone shock. Finally, the third working assumption is about the response of
fertility after an exposure to cyclones with respect to the number of children ever born. More
specifically, the model suggests that post-cyclone response in terms of fertility is independent
from the number of children ever born.

We draw on two main databases to provide empirical evidence for our research questions.
We first exploit 14 waves of the Demographic and Health Survey (DHS) of six countries,
namely Bangladesh, Cambodia, Dominican Republic, Haiti, Madagascar and the Philippines.2

This cross-sectional household survey has several practical advantages for the issue at hand:
it is nationally representative, has a large number of observations, and provides information
about individuals’ characteristics. In addition, the DHS includes the full fertility history of
each woman interviewed together with detailed information about their geographic location.
The second database used here is the Tropical Cyclone Exposure Database (TCE-DAT) of
Geiger et al. (2018). This worldwide database provides high-resolution information about the
wind field profile of more than 2,700 cyclonic systems, including 484 that made landfall on
the six developing countries during the 1985-2015 period examined in this paper. By merging

2The choose of this DHS wave and the one of countries studied in this paper is guided by data requirements.
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the geographic information of these two databases along with the fertility history of the DHS,
we construct a panel data model in which we retrieve the tropical cyclone exposure of a
given mother in a given year for the entire study period. The relationship between changes
in tropical cyclone wind speed exposure and the female likelihood of giving birth is then
examined by means of fixed effect regressions. In doing so, our panel reduced-form model has
numerous advantages, since only a minimal set of assumptions is imposed.3

Our main empirical results can be summarized as follows. First, we can affirmatively
respond to the abstract’s question and to our first working assumption: exposure to tropical
cyclone wind speed does indeed impact fertility. Our panel setup indicates that the direction
of the effect is negative. The point estimate suggests that a tropical cyclone shock of a
standard deviation magnitude, leads to a fall of 2.6 points in the probability of giving birth
a year after exposure. Second, our baseline estimates then show that the causal effect of
wind speed exposure depends on the degree of cyclonic exposure associated to the mother’s
living environment. In cyclone prone areas, the likelihood of giving birth decrease less. Third,
the magnitude of the fall in fertility also depends on the number of children ever born since
mothers with at least two children are much more likely to reduce their fertility after a cyclone
than mother with no child. In a last step, we take advantage of the continuous nature of the
wind speed variable together with the possibility of estimating models with more lags to refine
the nature of the relationship between cyclonic exposure and fertility. In particular, we find i)
a persistent effect of tropical cyclone shocks in the sense that we do not have evidence of any
reversal effect, ii) that recent past exposure to cyclones is associated with a lower decrease
in fertility when exposed and iii) no evidence of non-linearities in the causal effect. Overall,
our results are estimated to be robust to other measures of tropical cyclone exposure and to
several changes concerning sample restriction and/or the empirical specification.

Our paper is related to at least three strands of the economic literature. First, by merging
spatially geolocated micro-data with weather variables, our paper is part of a new but
flourishing body of literature that studies the effect of weather shocks on socioeconomic
variables (e.g., Deschênes & Greenstone (2011), Kudamatsu et al. (2012), Anttila-Hughes &
Hsiang (2013), Barreca et al. (2018), Dessy et al. (2019), Sellers & Gray (2019), Marchetta et al.
(2019), Norling (2022). We contribute to this research by focusing on the effect of a specific
weather variable, namely tropical cyclones, on fertility. Second, our paper contributes to the
literature examining how households respond after an adverse event (e.g., Morduch (1995),
Banerjee & Duflo (2007), Alam & Pörtner (2018)). Indeed, in developing countries, having

3First, the panel allows us to alleviate problems relating to omitted variables by fully controlling the
individual and time fixed effects. Second, insofar as tropical cyclone exposure can be viewed as (quasi-)random,
exploiting year-to-year variations in wind speeds experienced by inhabitants on the ground enables us to
identify their causal effects.
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children enables households to smooth their consumption over time. Thus, studying how
households react to a cyclonic event that induces the loss of property, crops, and livelihoods
allows us to contribute to the debate on how they respond to a cyclone shock. We add to this
body of literature by providing evidence for six developing countries regularly threatened to
tropical cyclones. Finally, our paper makes an important contribution to the literature on the
effect of natural disasters on fertility. To the best of our knowledge, four comparable papers
to our own focus on cyclonic events.4 First, Evans et al. (2010) investigate how the fertility
rate in US counties responds to storm advisories. They found that low-severity advisories are
associated with a positive fertility effect, while high-severity advisories are associated with
a negative effect. Second, Pörtner (2014) examines the effect of hurricane risks and shocks
in Guatemala. He exploits cross-sectional data along with historical data about hurricane
occurrences and finds a negative association between fertility and tropical cyclone exposure
at the municipal level. Third, Davis (2017) exploits rainfall data as a measure of tropical
cyclone exposure and observes that high levels of rainfall in Nicaraguan municipalities are
associated with an increase in fertility. Fourth, Norling (2022) investigates how fertility
responds to disasters in Africa and find that fertility is negatively associated to disasters. Our
paper overcomes many of the problems associated with these four papers, since our panel
setup alleviates concerns related to the unobserved heterogeneity of mothers. We rely on
a measure of tropical cyclone exposure that is directly related to its physical intensity and
destructiveness.5 Furthermore, we investigate heterogeneity dimension with respect to the
degree of cyclonic exposure of mother’s living environment and the number of children ever
born.

The roadmap of this paper is as follows. Section 2 presents some theoretical elements about
fertility and natural disasters. Section 3 details the data used in the empirical analysis. Section
4 develops our econometric framework and discusses identification assumptions. Section 5
presents the results. Finally, section 6 provides the conclusions.

4Other papers focusing on the post-fertility effect of earthquakes are discussed in subsection 4.1.
5More specifically, Pörtner (2014) employs historical records ,Evans et al. (2010) use advisory data and

Norling (2022) relies on the Emergency Events Database, a worldwide date known to be subject to several
bias (Botzen et al., 2019).
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2 Theoretical background

2.1 Economic theory on fertility

Theoretical models explaining fertility are based on the quality-quantity model first developed
by Becker (1960), Mincer (1963), and Willis (1974) along with its subsequent extensions.6 In
general, the model environment considers a representative household that maximizes utility
over consumption, the quantity of children, and their quality. The budget constraint is
comprised of labor income, the benefits and costs associated with children and their education,
and the interest gained from saving. Becker (1993) assumes that with increasing income, the
demand for child quality increases disproportionately to child quantity. This produces an
inverse relationship between income and fertility. In these models, a particular focus is given
to education as an investment in human capital (Becker, 1992; Azarnert, 2006; Lee & Mason,
2010; Pörtner, 2014; Vogl, 2016).

Other extensions of the model explore the demand for children as a demand for insurance
(Pörtner, 2001). This “risk-insurance” hypothesis supposes that in harsh poverty conditions,
children function as a kind of generalized insurance against an uncertain future, with this
insurance function constituting one of the main explanations of the high fertility (Cain, 1983;
Robinson, 1986). The insurance strategy can derive from the number of children and their
risk of death. Generally analyzed in the context of the demographic transition (Becker, 1992;
Schultz, 1997; LeGrand et al., 2003; Doepke, 2005; Azarnert, 2006), some studies focus on the
impact of mortality as a shock (Norling, 2022). The increase in fertility in response to expected
future child mortality is also known as the “hoarding” effect. In models where mortality is
stochastic and parents wish to preserve a certain number of children, the “hoarding” effect
occurs when an increase in fertility occurs in response to the expected future mortality of
children. If fertility is chosen sequentially, there is also a “replacement” effect: parents may
condition their fertility decisions on the survival of previously born children (Doepke, 2005).

The insurance strategy can also come from on the uncertainty of expected future income
(Ranjan, 1999; Pörtner, 2001). This uncertainty can occur in the labor market (Kreyenfeld,
2010, 2015; Hanappi et al., 2017). More recently, many studies have analyzed the link
between uncertainty and fertility, especially in the context of economic recessions in developed
countries.7 The underlying argument of these studies is that greater uncertainty about future
prospects will encourage couples to postpone and possibly forego childbearing altogether,
because it involves an irreversible investment with long-term consequences on resources
(Aassve et al., 2021). In this context, the aggregate fertility seems pro-cyclical over the

6The interested reader can refer to Schultz (1997) for a review of these extensions.
7The interested reader can refer to Aassve et al. (2021) or Sobotka et al. (2011) for a review.
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business cycle8 (Sobotka et al., 2011; Gozgor et al., 2021). This finding is also shown by
Ranjan (1999) with a two-period stochastic model of fertility that takes into account the
perceived uncertainty about future income. Finally, other works introduce the perception
of uncertainty (or risk aversion) to explain fertility variations and show that at times of
heightened uncertainty, risk-averse individuals will postpone childbearing more than risk lovers
(Schmidt, 2008; Hofmann & Hohmeyer, 2013). Vignoli et al. (2020) propose a conceptual
framework for the study of fertility decisions under uncertain conditions based on expectations
and “experience”.

2.2 Impact of natural disasters on fertility

Based on the literature on the determinants of fertility, some authors have explored the impact
of natural shocks on fertility. They examine the meaning and magnitude of the potential
impacts of natural disasters on fertility as well as the potential explanatory factors. Empirical
evidence about the effect of natural disasters and, more generally, weather anomalies on
fertility is mixed. The studies are primarily concerned with poor countries. In this way, most
of the time, the occurrence of a natural disaster is modeled as an exogenous shift in labor
income.9 The first-order conditions associated with the maximization of household utility
reveals that the desired number of children is chosen up to the point where the satisfaction
obtained from an extra child equates to its opportunity cost.10

The positive impact can be explained by either the replacement effect or the insurance
mechanism relating to income uncertainty. The replacement effect (or “hoarding” effect) is
examined by Nobles et al. (2015) on the impact of Indian Ocean Tsunami in 2004 or by
Nandi et al. (2018) on the earthquake in India in 2001. Finlay (2009) studies the insurance
mechanism and argues that children can be used to smooth consumption over time. More
precisely, she shows that fertility can increase after a disaster if and only if the benefit
associated with children is higher than the cost of taking care of them. In the model of Dessy
et al. (2019) for drought in Madagascar, an exogenous increase in labor market productivity
has two opposite effects on the shadow price of an additional child. On the one hand, it
increases the foregone income of women when they spend time out of the labor market to care
for children. On the other hand, an income effect renders each additional child cheaper. Dessy

8This result can be nuanced as in the work of Buckles et al. (2021).
9In developing countries, this variation in income corresponds to the realization of labor productivity (in

the agricultural sector) at the beginning of each period.
10The opportunity cost of the additional child is also known as the shadow price. In what follows, we use

both terms interchangeably.
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et al. (2019) assumes that the former prevails over the latter.11 Sellers & Gray (2019) observes
the same result for climate shocks (temperature and precipitation) where the reduction in
the opportunity cost of having children (especially in rural areas) is the main driver of the
fertility effect. Finally, for hurricane Cohan & Cole (2002) found a net increase of birth rate
due to post-disaster family restructuring.

Skidmore & Toya (2002) study the impact of climatic disasters in 89 countries and finds a
positive effect on economic growth but a negative impact on fertility. This negative impact can
be explained, at least in part, by conjunctural (Lindstrom & Berhanu, 1999) and psychologic
factors (Arnberg et al., 2011). Indeed, recent studies have shown that natural disaster or
climate anomalies have a negative impact on fertility under certain circumstances. Thiede
et al. (2022) emphasizes that climate exposure affects reproductive outcomes but only in
specific locations and populations, with this heterogeneity underscoring the need to consider
socioeconomic and environmental factors. More specifically, for cyclones, Berlemann &
Wenzel (2018) showed a positive impact on fertility in low-income countries but a strong and
significantly negative effect for countries with high levels of development. For the United
States, Evans et al. (2010) found an increase in fertility for hurricanes of low severity, while
severe tropical storms led to a decrease in fertility. The negative effect can also be explained
by the increase in the opportunity cost of having children (Kochar, 1999; Evans et al., 2010;
Alam & Pörtner, 2018; Berlemann & Wenzel, 2018; Norling, 2022) or by the uncertainties
caused by the disaster shock (Davis, 2017; Pörtner, 2014; Wang et al., 2022).

Despite the underlying uncertainty assumption, few studies incorporate it explicitly.
Pörtner (2014) differentiates between risk and shock variables. Risk represents the percentage
probability of a hurricane occurring in a given year for each area, whereas shock is the number
of cyclones experienced by a woman during her fertile period.12 Pörtner (2014) finds that
shock leads to a decrease in fertility, while the risk increases fertility for the households with
land. 13 In the literature that uses theoretical models, (Finlay, 2009; Pörtner, 2014; Marchetta
et al., 2019; Norling, 2022) integrate uncertainty in the evolution of income (that depends on
the investment in education) in the decision to have children.

2.3 Theoretical model proposition

This subsection develops a model regarding parental decisions about fertility. The model
environment has two periods. The household has utility in both periods but experiences

11Another reason based on more psychological factors is the fact that motherhood is a way to cope after an
emotionally traumatic experience (Carta et al., 2012).

12More specifically, this is "the number of cyclones between the year the woman enters her fertility period
(taken to be 15 years) and her 29th year or the survey year, whatever is first" (Pörtner, 2014).

13Pörtner (2014) also includes the effect of shock and risk on education.
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some uncertainties about outcome in period 2 (Pörtner, 2014). The overall utility U of the
household is the sum of utility in period 1 (U1) and the expected utility of period 2 (E(U2)):

U = U1 + E(U2)

In each period, the household receives utility from consumption of a general good c. In the
utility function, we consider the log of consumption to obtain a diminishing marginal utility
of consumption such that U1 = ln(c1) and U2 = ln(c2) (Finlay, 2009). The household budget
constraint indicates that income from period 1 Y1 is spent by consuming c1 and by supporting
the cost k of raising ever born children n1. In period 2, the budget constraint is different. We
assume that children born in period 1 contribute positively to household income wn1, with
w > 0. This new income supplements the income received in period 2 Y2. The expenditure of
period 2 is similar to that of period 1:

Y1 = c1 + kn1

Y2 + wn1 = c2 + kn2

Following Ranjan (1999), we assume that income in period 2 varies with probability.14 So,
the expected utility of period 2 depends on the probability of exposure to natural disasters λ

in period 2. In the event of an adverse shock, we assume that income decreases by a quantity
equal to δY2 with δ ∈ [0, 1]. Assuming an absence of intertemporal discounting and saving,
the household can choose how many goods and children to have in each period to maximize a
global additively separable utility function of the following form:

U = ln(Y1 − kn1) + λ[ln(Y2(1 − δ) + wn1 − kn2)] + (1 − λ)[ln(Y2 + wn1 − kn2)] (1)

Let us now focus our discussion on the first-order condition with respect to the optimal
number of children to have in period 2. The latter can be written as follows:

∂U

∂n2
= 0 ⇔ n2 = Y2 (1 − δ(1 − λ)) + wn1

k
(2)

The comparative statics of equation (2) informs us about the direction of the effect of a given
parameter on the number of children to be born in period 2. With respect to the share of

14However, although Ranjan (1999) assumes that income increases with probability 1/2 and decreases with
probability 1/2, we assume here that probability is a parameter between 0 and 1.
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income loss due to the occurrence of an adverse event such as a cyclone δ, we obtain:

∂n2

∂δ
= −(1 − λ)Y2

k
< 0 (3)

An increase in the amount of lost income has a negative incidence on fertility. This leads us
to our first working assumption to be tested in empirical analysis:

Working assumption 1: All else being equal, after an adverse shock such as
the occurrence of a cyclone, the likelihood of motherhood is expected to fall.

Then, it may be interesting to compute the functional form of the derivative of (3) with
respect to the probability of being exposed λ. Indeed, we cannot exclude that the effect of
cyclonic exposure on motherhood depends on the degree of exposure of people living in the
most exposed areas. The latter is written as:

∂2n2

∂δ∂λ
= Y2

k
> 0 (4)

Given that the number of children is a decreasing function in the share of income loss, the
positive sign of (4) indicates that n2 decreases less in areas that are more frequently exposed
to the disaster. Our second working assumption to test empirically is as follows:

Working assumption 2: All else being equal, in cyclone prone areas, the
sensitivity of fertility to cyclonic exposure is lower.

Finally, our data allow us to investigate if post-cyclone fertility depends on the presence of
children ever born in the household. In the model, the derivative of (3) with respect to n1 is
thus:

∂2n2

∂δ∂n1
= 0 (5)

Consequently, our theoretical framework implies that the number of children to be born in
period 2 after cyclone exposure is not related to the number of children born in period 1. Our
third working assumption is as follows:

Working assumption 3: All else being equal, the post-cyclone fertility response
does not depend on the number of children ever born.

These three working assumptions will frame the development of our empirical results. Section
5 aims to provide an empirical response to these assumptions.
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3 Empirical background and data

3.1 Demographic and Health Survey

Our primary source of micro-data about female fertility is the DHS of countries exposed to
cyclones. The DHS is a series of cross-sectional surveys that is conducted approximately every
5 years. The DHS is generally conducted by the national institute of statistics and benefited
from the technical and financial support of international institutions. For each phase of the
DHS, a nationally representative sample of women aged from 15 to 49 years were interviewed.
From these women, detailed information was collected about their sociodemographic (e.g.,
household composition, education level, number of children, household well-being) and
health characteristics (e.g., infant mortality, nutritional practices, malaria prevalence, use of
contraceptives). Among the broad range of information available in the DHS, we exploit the
mother’s fertility history in depth. This retrospective record allows us to retrieve information
about the children’s year of birth and gender or the women’s age at childbirth. From this
fertility history, we construct a panel dataset of women and define a binary variable to indicate
whether a woman gave birth or not during a given year.

Let us now describe in further details the sample selection of the DHS, because it has
important implications on the design of our empirical study. The sample of each DHS wave is
a two-level stratified random sample. At the first level, the country territory is divided into
thousands of clusters with a number of clusters being randomly selected.15 At the second level,
for each cluster selected at the first level, around 30 households were randomly chosen. The
geographical information that we use to locate the women comes from the first-level selection.
In particular, for each selected cluster, the data producer provides geographical information
about its centroïd. However, to ensure the confidentiality of the selected households, the
data producer does not provide the exact latitude and longitude of the cluster’s centroïd but
randomly displaces the actual location within a 2 (or 10) km radius in urban (or rural) areas.
We then combine information about the cluster’s location with information about tropical
cyclones to retrieve the wind speed exposure experienced by inhabitants on the ground.

To conduct our research, we apply some restrictions to our sample. First, among all
countries with DHS microdata, we first select those with a positive exposure to tropical
cyclones. Second, given that the geographical information about cluster locations is essential,
we exclude DHS’ wave without geographic information. For the DHS with geographical
information we exclude households living in clusters without exploitable coordinates.16 Third,

15For instance in Madagascar, 285 clusters among 21,500 were selected for the 1997 phase of the DHS
compared to 600 in 2008.

16Missing geographical information are due to i) inconsistencies in the reported geographic coordinates and
ii) the incapacity of the data producer to access some clusters (ICF Macro (1998), ICF Macro (2010)).
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as we use the retrospective data about mothers’ fertility, we need to ensure that a given
woman has been really exposed to a given tropical cyclone in a given year. To do so, we follow
Kudamatsu (2012) and Anttila-Hughes & Hsiang (2013) by restricting our final sample to
mothers declaring that they have always lived in their current home.17 It should be observed
that for some DHS’ waves, information about the arrival in the current home is simply missing
for all observations. As we believe that having knowledge about the residence of the mother is
mandatory for our purpose, we select waves of DHS for which this information is recorded.18

These restrictions leave us with a sample of six countries namely Banglasdeh, Cambodia,
Dominican Republic, Haïti, Madagascar and Philippines.19 Finally, as we iterate backwards
to construct our panel database, we drop all records for which the mother’s age is below the
threshold of 15.20

Table 1 reports a selection of summary statistics. In our final sample, the total number
of children per woman was 3.22, while the birth frequency was 17%. The average age at
first childbirth was equal to approximately 20 years. Approximately, 23% of women reported
having no education, while around 43% reported, at best, a level equivalent to primary
education. This results in a relatively low number of years at school (around 3.5 years).

3.2 Macroeconomic context

Table 2 presents macroeconomic statistics for 2015 for the six countries that make up our
sample.21 We choose this year because the sample period studied in this paper ends in 2015.
These statistics allow us to better understand the differences in the magnitude of the effects
in our model.

The six countries included in our sample had more than 320 million people in 2015. The
majority have a population density higher than the global average (57 inhabitants per km2).
Bangladesh and the Philippines are particularly populous, with 157 million and 103 million
inhabitants, respectively. Given the smaller area of Bangladesh (147,630 km2), it has a density

17In a robustness check, we relax this assumption (see Appendix C).
18Having no information about the arrival of the mother in the current home is problematic even if

geographical information about cluster locations is available. In particular, one could attribute an exposure to
a woman whereas she actually leaves elsewhere.

19Overall, we employ 14 waves of DHS. DHS waves used in this paper are: for Bangladesh waves IV and V,
for Cambodia waves IV and V, for Dominican Republic wave V, for Haïti waves IV, V and VII, for Madagascar
waves III and V, and for Philippines waves IV, V and VII.

20For instance, for a woman born in 1973 and aged 35 in 2008 at the time of the interview, we build annual
records of her fertility from 1988. This woman enters the our dataset when she is 15 and her last record
correspond to the year of the interview.

21These statistics are mainly from the World Bank (https://data.worldbank.org/. The HDI data comes
from the UNDP (UNDP, 2016) and the EVI data comes from FERDi (https://ferdi.fr/en/indicators/
a-retrospective-economic-vulnerability-index)
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Variable Sample mean
Mother’s age 26.80

Mother’s age at first birth 19.92
Mother’s age at first marriage 18.68

Number of children 3.22
% of birth 0.17

Years of education 3.56
No education (in %) 0.23

Primary education (in %) 0.43
Secondary education (in %) 0.25
Tertiary education (in %) 0.09

Table 1: Sample mean of a selection of women’s characteristics.
Sources: DHS and authors’ own calculations.
Notes : Statistics are computed on a sample of 58653 women. The "% of birth" correspond to the frequency
of birth once the panel is constructed.

of 1,213 inhabitants per km2, making it one of the 10 most densely populated countries on the
planet. Both the Philippines and Haiti also have high population densities, with 346 and 383
inhabitants per km2, respectively, although the Philippines has a much larger area (300,000
km2). Haiti and the Dominican Republic both have a population of about 10,500 inhabitants,
although the territory of the latter is almost twice the area (27,750 vs. 48,670 km2), thus
resulting in its lower population density (215). Finally, Cambodia and Madagascar have lower
population densities (87 and 43) due to their large territories, particularly Madagascar with
587,295 km2. In most of these countries, their population growth rates are higher than the
global rate of 1.2 births per 100,000 inhabitants . Madagascar has the highest population
growth rate with 2.6 compared with rates between 1.2 and 1.7 births per 100,000 inhabitants
for the five other countries.

Aside from the Dominican Republic, these countries are among the poorest on the planet.
Madagascar is the poorest country included in the study, with GDP per capita of USD 1,508.
Haiti, Bangladesh, and Cambodia have a per capita income between USD 2,935 and 4,217.
Philippines has a higher per capita income of USD 7,123. However, the per capita income
of the Dominican Republic is much higher compared with the other countries in the group,
being USD 14,565 or twice that of the Philippines. A high proportion of the population in
these countries lives below the poverty line. Indeed, the poverty headcount ratio at USD
3.65 a day as a percentage of the population is 92.4% for Madagascar, which is the poorest
country.22 Next, more than half of the population in Bangladesh and Haiti live below the

22For this indicator, we chose 2012, because this year has the most complete data, with the exception of
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Variables Bangladesh Cambodia DR Haiti Madagascar Philippines
Demographic
Pop. (in thousands) 157 830 15 417 10 405 10 563 24 850 103 031
Population growth 1.2 1.3 1.2 1.4 2.6 1.7
Area (in km2) 147 630 181 040 48 670 27 750 587 295 300 000
Density 1 213 87 215 383 43 346
Economic and poverty
GDP per capita 4217 3412 14565 2935 1508 7123
Annual GDP growth 6.6 7 6.9 2.6 3.1 6.3
PHR 51.6 – 14.3 58 92.4 34.6
Indicators of development
HDI score 0.579 0.563 0.722 0.493 0.512 0.682
HDI rank 139 143 99 163 158 116
Total fertility rate 2.1 2.6 2.4 3.1 4.2 3
Birth rate 19.2 22.3 20.6 25.6 32.8 23.2
EVI 24.28 35.26 21.27 28.80 35.31 24.59

Table 2: Macroeconomic indicators.
Sources: World Bank, UNDP and FERDI.
Notes: DR stands for Dominican Republic. Density is measured as the number of people per km2, GDP per
capita is in USD in Purchasing Power Parity, PHR correspond to the Poverty headcount ratio in USD per day
in % of population for 2012, 2016.

poverty line with 59.3% and 58% of the population, respectively. The poverty headcount
ratio in the Philippines is similar to the world rate (32.7%) with 34.6%. Only the Dominican
Republic has a better rate than the world rate with 14.3%. Thus, the Dominican Republic
is clearly above the sample in terms of wealth. We may also draw attention to the wealth
difference between the Dominican Republic and Haiti, which share the same island.

These countries are characterized by high but heterogeneous economic growth rates.
Indeed, it is much higher than the world rate (3.1%) for Cambodia (7%), the Dominican
Republic (6.9%), Bangladesh (6.6%), and the Philippines (6.3%), while it is equivalent for
Madagascar (3.1%) and lower for Haiti (2.7%). The development indicators provide support
to the economic data. Indeed, the human development index (HDI) places the six studied
countries between 99th and 163rd place in the world rankings. More precisely, Haiti and
Madagascar belong to the group of countries with low human development (<0.550), while
Cambodia, Bangladesh, and the Philippines have medium human development (between 0.550
and 0.700). Only the Dominican Republic is in the high development group (>0.700).

To focus on birth, we may explore two indicators: the “total fertility rate” which represents
the number of children that would be born to a woman if she were to live to the end of
Bangladesh, whose closest year is 2016, and Cambodia, for which this indicator is not available.
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her childbearing years and bear children in accordance with age-specific fertility rates of
the specified year, and the “crude birth rate”, which indicates the number of live births per
1,000 midyear population. These two indicators show the strong birth dynamics in these
territories. Madagascar has the highest rates with 4.2 and 32.8, respectively. For the total
fertility rate, Haiti, the Philippines, and Cambodia also have a higher rate than the world
rate (2.5), while Dominican Republic and Bangladesh have a lower rate. Finally, the birth
rate in all these countries is higher than the global value (19.1), because the population is
young and of reproductive age.

Finally, let us look at the economic vulnerability index (EVI) defined by the Committee for
Development Policy of United Nations. The IVS aims to measure the structural vulnerability
of developing countries resulting from the magnitude of shocks and exposure to shocks ??.
We see that the two most vulnerable countries are Madagascar and Cambodia, with scores of
35.31 and 35.26, respectively. Haiti has a score of 28.80. The Philippines and Bangladesh
have an equivalent score of 24.59 and 24.28, although the Philippines has a more advanced
level of development in terms of GDP and HDI. The Dominican Republic is also the least
vulnerable country in the sample with a score of 21.27.

3.3 Tropical cyclone data and wind speed exposure

Tropical cyclones are natural atmospheric phenomena that develop mainly in tropical regions.
A cyclone is a non-frontal synoptic scale system rotating clockwise in the Southern Hemisphere
and counter-clockwise in the Northern Hemisphere. It is organized around a center of low
atmospheric pressure called the eye, which is bounded by convective clouds that form an eye
wall and precipitating spiral bands that wrap around it. This highly convective phenomenon
is characterised by strong surface winds. Cyclonic systems are divided into several categories,
according to the intensity of the associated winds (defined as the maximum speed of the
wind at an altitude of 10 m, averaged over 10 min (except in the United States where it is
averaged over 1 min). In this paper, we use the terms tropical systems, cyclonic systems,
and tropical cyclones interchangeably to designate tropical systems of any magnitude.23 The
wind associated with cyclonic systems can thus cause severe damage. Some are listed by
Tamura (2009)’s study according to wind speed thresholds. For instance, maximum 10-minute
averaged winds of 90 km/h can damage roof tiles, while above 162 km/h, the constraints
of the main frame of high-rise buildings exceed the elastic limit. The devastating effects of

23We however acknowledge that there are three classes of cyclonic phenomena. First, if the wind speed is
less than 63 km/h, it is called a tropical depression. Second, between 63 and 117 km/h, it is called a tropical
storm. Third, above 117 km/h, it is called a tropical cyclone in the Indian Ocean and the South Pacific, a
hurricane in the North Atlantic and the North-East Pacific, or a typhoon in the North-West Pacific.
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tropical cyclones mainly come from strong winds (CCR, 2020).24

3.3.1 TCE-DAT caracteristic

A prerequisite for our empirical study is a measure of wind speed exposure experienced by the
population on the ground. As it is not possible to rely on weather ground station data at a
detailed level in the context of the six developing countries under scrutiny here, we exploit the
worldwide TCE-DAT of Geiger et al. (2018). To produce this database, Geiger et al. (2018)
calculate an estimate of the lifetime’s maximum surface wind speed at each spatial location
(on a 0.1◦ × 0.1◦ grid over land) for more than 2,700 landfalling cyclonic systems between
1950 and 2015. As the quality of data records resuired to compute wind speed is lower before
1980, we choose a cautious approach by placing our cut-off several years after 1980, namely
in 1985.25 The calculation is based on the International Best Track Archive for Climate
Stewardship (IBTrACS) archive (Knapp et al., 2010), which contains all the information
necessary for a wind field model such as that of Holland (1980) that is widely used in studies
on the evaluation of the risks associated with the landfalling of tropical cyclones (Peduzzi
et al., 2012). Geiger et al. (2018) implement the revised hurricane pressure-wind model of
Holland (2008) in which the maximum surface wind speed W in m.s−1 (for a given pixel)26

at radial distance r of the center of a given cyclonic system is defined as follows:

W =
(

bs

ρe
∆p

(
r

rm

))0.5

, (6)

where ρ is the surface air density in kg.m−3, e the base of natural logarithms, and ∆p the
pressure drop at the cyclone center in hPa as a function of r and rm (radius of maximum
winds). Parameter bs depends on ∆p, the temporal intensity change in pressure, the absolute
value of the latitude, and the tropical cyclone’s translational speed. Further details on the
development of the parametric equation of bs can be found in Holland (2008). In addition to
the wind field model in equation (6), Geiger et al. (2018) calculated a translational component
multiplied by an attenuation factor (ratio between the tropical cyclone’s center and the radius
of maximum wind). The translational wind speed decreases with the distance from the
cyclonic system’s center, which is taken into account to provide more realistic estimates of

24CCR (2020) collect post-cyclone insurance data and find that the vast majority of insurance claim
payments are due to wind speed rather than rainfall, landslides, or storm surges.

25Geiger et al. (2018) indicate that records are sometimes incomplete or of poor quality before the early
1980s. We confirm that the use of data since 1981 (the first available date for the rainfall variable in our
econometric specification) has no incidence on the main message of the paper. Corresponding results are
available upon request.

26For simplicity, we do not add an index to designate pixels.

17



wind exposure on the ground. To our knowledge, there is no other publicly available dataset
from a ground weather station or remote sensing measurement covering the whole territory of
Madagascar with a spatial resolution higher than 0.1◦ × 0.1◦. This is the main reason why we
decided to use the wind speed estimate calculated by Geiger et al. (2018).27

Table 3 and the barplot of Figure 1 show summary statistics about cyclonic exposure of
clusters under scrutiny in this paper. Overall, 21.0% of our pairs of cluster-year observations
experienced a positive wind speed exposure. Over our sample period, the mean number of
exposures to cyclones was of 7.4. Given that the standard deviation of exposure frequency is
approximately equal to its mean, the number of exposures by clusters is quite heterogenous.
Thus, 11% of clusters were not exposed at all to cyclones. In Figure 2 these clusters are
represented by the yellow part of each map. Looking at the top of the distribution, we
observe that the top 10% of clusters were exposed at least 19 times over the 1985-2015 sample
period. Given the nature of our empirical approach, such heterogeneity in the exposure of
clusters is worth investigated because it creates within variations that could be explored
by our panel fixed effect regressions. Let us now take a look on the profile of wind speed
exposure generated at the surface. To do so, we now focus on DHS clusters when exposure is
non-zero.28 The average wind speed exposure during the 1985-2015 period is 93.5 km/h with
a standard deviation of 32.2. Again, there is substantial heterogeneity in our sample insofar
as 10% of clusters were exposed to tropical cyclones with wind speeds above 138.4 km/h.
Observe that the maximum wind speed recorded during our sample period is 293.7 km/h.
This extreme wind speed is due to Haiyan, one of the most severe phenomena that passed
over Philippines. For illustrative purposes, we plot in Figure 2 the field of annual maximum
wind speeds for the six countries belonging to our sample during the 1985-2015 period. It
appears that exposure to cyclonic wind speed is the highest in Philippines especially at the
north of this country. Then, Madagascar is the second country with the highest exposure.
In particular, the north-east cost of the country is regularly threatened by tropical cyclones.
Among the countries studied here, Bangladesh, Haiti and Dominican Republic have a wind
speed exposure falling in the middle of distribution. Finally, the north east of Cambodia has
a similar exposure as the three quoted countries but the other parts of the county appears to
be less prone to be exposed to such a natural phenomenon.

27The dataset is referenced as Geiger et al. (2017) and is available at https://dataservices.gfz-
potsdam.de/pik/showshort.php?id=escidoc:2387904.

28In doing so, we follow Elliott et al. (2015).
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Nb. of exposure Wind speed Rainfall Temperature
Mean 7.40 93.50 19.00 25.60

Standard deviation 7.30 32.20 8.10 1.90
Min. 0.00 61.20 1.90 16.40

Percentile 1% 0.00 63.50 5.60 18.30
Percentile 5% 0.00 64.60 8.40 22.30
Percentile 10% 0.00 65.80 10.50 23.40
Percentile 25% 2.00 71.60 13.60 25.00
Percentile 50% 6.00 84.30 17.50 25.90
Percentile 75% 9.00 99.00 22.90 26.90
Percentile 90% 19.00 138.40 29.70 27.70
Percentile 95% 24.00 166.10 34.30 28.10
Percentile 99% 29.00 212.60 45.60 28.50

Max. 34.00 293.70 72.50 29.10
Observation 7,626

Table 3: Summary statistics of weather variables for the DHS clusters during the 1981-2015
period.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Wind speed corresponds to the maximum wind speed experienced and is expressed in km/h. Rainfall
corresponds to the cumulative precipitation over a year and is expressed in hundreds of millimeters. Tempera-
ture is the annual average temperature and is expressed in Celsius degrees. For the wind speed, summary
statistics are computed only for non-zero cluster-year pairs.

3.3.2 Other weather data

Although our main focus is on the impact of tropical cyclone exposure on motherhood, we
include two other weather variables in our analysis, namely rainfall and mean temperature.
Their inclusion is meant to avoid noises due to the shared secular changes that might be
correlated with tropical cyclone exposure. Our rainfall variable comes from the the Climate
Hazards group InfraRed Precipitation with Stations (CHIRPS) dataset constructed by Funk
et al. (2015). When constructing this dataset, Funk et al. (2015) combine ground station
and satellite information to obtain high-resolution (0.05◦ × 0.05◦) gridded data. Concerning
temperature, we use the updated worldwide gridded climate dataset of the Climate Research
Unit (CRU) of the University of East Anglia (Harris et al., 2014). This dataset nevertheless
has a lower resolution than that of CHIRPS, since it is available at 0.5◦ latitude/longitude
grid cells. The last two columns of Table 3 report the univariate statistics of rainfall and
mean temperature.
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Figure 1: Distribution of cyclonic exposure experienced by DHS clusters (1981-2015).
Sources: DHS, TCE-DAT (Geiger et al., 2018), and authors’ own calculations.

4 Empirical framework

4.1 Estimated equation

Our empirical strategy consists of estimating different versions of the following baseline model:

yitcv =
L∑

l=1

(
βW

l × Wi,t−l + βR
l × Ri,t−l + βT

l × Ti,t−l

)
+ µi + ηt + θv + αc + uitcv (7)

Where i indexes a given woman, t a given year, and c a given cluster. The outcome of interest,
namely yitc, is a binary variable equal to one if mother i from country c living in cluster
v gives birth in year t and zero otherwise. Given that yitcv is dichotomous, we rely on a
linear probability model. 29 In equation (7), βj

l with j ∈ [W, R, T ] are coefficients to be
estimated. Our main weather variable of interest corresponds to the tropical cyclone wind
speed exposure W of woman i in year t − 1 measured in kilometers per hour (km/h). We
also include as controls two other weather variables: annual rainfall R expressed in hundreds
of millimeters and annual land surface mean temperature T measured in Celsius degrees
in t − 1. We justify the inclusion of these two variables as an attempt to lessen the issues

29Such a practice is standard in the empirical literature dealing with dependent dichotomous variables in a
panel setup (Anttila-Hughes & Hsiang (2013), Kudamatsu (2012), Kudamatsu et al. (2012)). In particular, it
is well known that the incidental parameter problem complicates the estimation of panel models with fixed
effects. In contrast to linear models, it is not possible to remove fixed effects with the traditional within
transformation. Moreover, estimating them directly leads to biased estimates of all parameters (see also
Wooldridge (2010) or Croissant & Millo (2018) for more details).
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Figure 2: Mean of wind speed exposure (1980-2015)
Sources: DHS, TCE-DAT (Geiger et al., 2018), and authors’ own calculations.
Notes: The dots of each panel correspond to cluster coordinates of the last wave of DHS used for each country.
From the top-left to the bottom-right we have Bangladesh, Dominican Republic, Haïti, Cambodia, Madagascar
and Philippines.

related to omitted variables. If there are correlations or shared secular changes among the
weather variables, studying the impact of a weather variable in isolation could be problematic
(Dell et al., 2014).30 In the baseline model, we set L = 1 so that the three weather variables
enter our model with a one period lag. We also consider the case where L = 5 so that each
weather variable enters with up to five lags in sensitivity analysis (see subsection 5.2).31 We
include woman fixed effects µi to control for unobserved and time-invariant characteristics
that could potentially affect women’s likelihood of childbearing.32 We also flexibly account
for year-specific components shared by all women using a year fixed effect ηt. Their inclusion
ensures that the relationship of interest can be identified from idiosyncratic shocks. We also

30In particular, it is arguable that the tropical cyclone exposure of a given spatial unit may be correlated
with its surface temperature or rainfall level. In this respect, Hsiang (2010) finds that each additional Celsius
degree in a country’s local surface temperature is associated with a 9.36 km/h increase in local wind exposure
in the Caribbean basin countries.

31As such model reveals that beyond one period, coefficients associated to lags of cyclonic exposure are
significant but closer to zero, in the baseline we include only one lag.

32These unobserved factors could be the (time-invariant) preference of women to have a large family. Their
preference can also be rationalized by emphasizing the opportunity cost of taking care of children. Women’s
more limited outside options in the labor market probably increase the opportunity cost of spending time in
labor market activities, thus leading them to have more children and devote more time to their childrearing.
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include cluster and country fixed effects θv and αc to capture any unobserved characteristics
that plausibly affect women’s childbearing behavior at the “village” or the country level.
Finally, uitcv is the error term. Given the sampling design of the DHS surveys, we follow
Abadie et al. (2017), while standard errors are clustered at the first-level sample selection to
allow for any correlation of the error term uit over time and space within each DHS cluster.

Our estimation of women’s likelihood of giving birth mainly controls for weather-related
variables. Two main arguments support this choice. First, control variables themselves should
not be outcomes of weather-related variables (Dell et al., 2014). Let us take household income
as an additional control variable.33 In this case, we cannot exclude that it is also an outcome of
cyclonic wind speed. Consequently, if a model includes income, then the estimated coefficient
on wind speed would not capture its total net effect on fertility, because income can be written
as a function of wind speed. Second, when adding control variables such as income, we may
encounter an endogeneity problem. Specifically, we could argue that income has an effect
on fertility, but we could also conjecture that fertility explains, at least in part, women’s
income.34 This is the well-known reverse causation problem that leads to the introduction of
a selection bias in the estimation of the income-related coefficient as well as other estimated
coefficients in the model. Given these two arguments, we believe that the parsimonious model
of equation (7) remains a relevant departure point. In doing so, our empirical model is able
to unveil the true net effect of cyclonic wind speed (or the total effect) on women’s likelihood
of giving birth.

4.2 Identifying assumption

Insofar as fixed effects are included in equation (7), variables are expressed as deviations
from the individual and temporal sample means (Croissant & Millo, 2018). Our identification
emphasizes year-to-year variations in levels from the observed means. As a consequence, the
fixed effect coefficients associated with wind speed could be interpreted as the impact of
tropical shocks on women’s probability of giving birth.

The main assumption used on to identify the causal effect of tropical cyclones on fertility
is randomness in an individual’s exposure. Being exposed to cyclonic systems can be viewed
as (quasi-)random insofar as the formation of cyclonic systems in addition to their precise
trajectories and magnitude are stochastic and difficult to predict. When they occur, tropical
cyclones generate recognizable wind speeds of high magnitude hitting large spatial units

33Note that the construction of our panel data does not allow us to retrieve an income variable, because we
mainly rely on the mothers’ fertility history for which such information is not available.

34Similar problems could arise for variables such as education level, years of education, school dropout,
participation in the labor market, and so on.
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(quasi-)randomly so that inhabitants living in these areas experience the exposure, while those
living in non-affected areas experience no exposure. We however acknowledge that some areas
are more likely to be exposed by tropical cyclones so that the total effect on fertility could
vary depending on the level of risk. We also consider this possibility by introducing such a
heterogeneity dimension in our empirical analysis (see also section 5).

There are potentially two issues relating to the randomness of tropical cyclones, both of
which are related to the ability of meteorologists to forecast the occurrence of tropical cyclones.
Indeed, meteorologists have made substantial progress in forecasting the seasonal frequency
of tropical systems (Klotzbach et al., 2019). Furthermore, it is now possible to forecast the
occurrence of a tropical cyclone a few days before its landfall. From our point of view, this
forecasting nevertheless has almost no incidence on our identification strategy, because our
focus is on year-to-year variations. In particular, if seasonal forecasts have a higher predictive
power, the year-to-year variations in tropical cyclone wind speed at a given spatial unit largely
remains unpredictable for scientists and thus for inhabitants potentially concerned by tropical
cyclones. Regarding short-run forecasting, it implicitly assumes that inhabitants living in
areas threatened by a cyclonic system have perfect access to the information (by means of
a radio, television, or newspaper). This could be not the case in the context of developing
countries.Nevertheless, it is probable that important information about the occurrence of
tropical cyclones circulates through other channels like people’s social networks, so we cannot
totally exclude the fact that individuals could engage in actions to protect their homes
and livelihood or evacuate. These issues have some repercussions on the interpretation of
our results. More specifically, the estimated effect could be viewed as the effect of tropical
cyclone shocks after households engage in adaptive behaviors (if any). However, despite such
behaviors, inhabitants cannot overcome all the negative effects of tropical cyclones, meaning
that a degradation in their living environment is perceptible and may affect their decision to
have children. Insofar as year-to-year variations in the exposure to tropical cyclones shocks
are (quasi-)random, our reduced-form panel framework imposes relatively few identifying
assumptions while ensuring a causative interpretation.

5 Results

This section presents the results obtained by estimating the econometric model detailed in
the previous section. All estimations were made with the R software (R Core Team, 2019)
using tools provided by the “fixest” package.35

35Details about the fixest package can be found via the following link: https://cran.r-project.org/
web/packages/fixest/vignettes/fixest_walkthrough.html.
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(1) (2) (3) (4)
Max. wind in t − 1 -0.0659∗∗∗ -0.0676∗∗∗ -0.0784∗∗∗ -0.0801∗∗∗

(0.0014) (0.0014) (0.0018) (0.0018)
Max. wind in t − 1 × Prone – – 0.0305∗∗∗ 0.0304∗∗∗

– – (0.0025) (0.0025)
Rainfall in t − 1 – 0.2001∗∗∗ 0.2029∗∗∗

– (0.0154) – (0.0154)
Temperature in t − 1 – 1.042∗∗∗ – 0.7866∗∗∗

– (0.2498) – (0.2524)
Observations 1,025,443 1,025,443 1,025,443 1,025,443

Table 4: Main regression results.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses, adjusted for
clustering at the DHS cluster level. All regressions include woman fixed effect, annual fixed effect, cluster
fixed effect and country fixed effect. The term “Prone” refers to a dummy equal to one when the mother
leaves in a village that was exposed to cyclone at least 10 times during the 1985-2015 period. Maximum wind
speed is measured in km/h, rainfall in hundreds of millimeters and temperature in Celsius degrees.

5.1 Main results

5.1.1 Fertility response to cyclone shocks

Table 4 reports the regression results of the alternative estimations of equation (7). To see
how the inclusion of controls for temperature and rainfall alter the results, we sequentially
add both of them in columns (2) and (4).

Column (1) and (2) reports the results of a model with exposure to wind speed being
measured by the maximum wind speed generated at the surface. These models show the
negative impact of tropical cyclone wind speed shocks on mothers’ likelihood of giving
birth. The estimated relationship is consistently negative regardless the inclusion of controls
for temperature and rainfall. In the model of column (2), a wind speed exposure shock
in t equivalent to a standard deviation, namely 38.8 km/h, induces a fall of 2.6 points
(38.8 × −0.0676) in women’s likelihood of giving birth in t + 1.36 Alternative specifications
of the baseline empirical model, consisting in changing our sample restriction by including
mothers who migrate or splitting the sample to consider two sub-periods do not change the
qualitative nor the quantitative pattern of our baseline results. As a result, our empirical
evidence provides an affirmative answer to our first working assumption.

36A similar metric shows that the probability of giving birth for mothers exposed to extreme wind speeds
(e.g., 213 km/h), falls by about 14.4 points in the next calendar year.
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Empirical evidence on working assumption 1:
Exposure to tropical cyclones does reduce the likelihood of motherhood.

5.1.2 Degree of exposure and fertility response to cyclone shocks

To further investigate the nature of the relationship between wind speed exposure and
motherhood, in Appendix A we present country-by-country regressions. These regressions
show that the qualitative pattern is the same for the six countries under scrutiny here: exposure
to cyclones reduces the probability of giving birth. However, depending on the country, the
quantitative patterns could differ substantially. Thus, countries such as Madagascar or the
Philippines are those with the smallest effect. For instance, an extra exposure to wind
speed reduce the probability of motherhood in t + 1 of 0.0452 in Philippines and 0.0271
in Madagascar. By contrast, countries such as Haiti, Cambodia or Dominican Republic
experience the highest effects in term of post-cyclone reduction in fertility. In Haiti, and extra
exposure to cyclonic wind speed in t translates in a fall in the likelihood of having babies of
0.231. In comparison to Madagascar, the fertility response in Haiti is eight times higher. An
interesting feature emerging from the comparison of country-by-country regressions is that
the effect seems to be higher in countries least frequently exposed.37 38

In columns (3) and (4) of Table 4, we further explore the link between the degree of
exposure associated to cyclonic and fertility. As Figure 2 shows, clusters’ exposure to tropical
cyclones is quite heterogeneous. Summary statistics of Table 3 unveil that over our sample
period, 10% of villages were exposed more than 19 times while 25% were exposed less than
two times. Even after controlling for cluster fixed effects, it is still possible that the effect of
cyclonic wind speed on motherhood depends on the degree of exposure and preparedness of
people living in most exposed villages. We could imagine that mothers living in the most
frequently exposed areas anticipate the higher probability of exposure when taking their
decision about having babies. Thus, their response to a cyclone shock could be different from
mothers living in non-prone areas. To investigate this issue, we interact wind speed exposure

37According to the TCE-DAT of Geiger et al. (2018), during the 1985-2015 sample period Haiti has been
exposed to cyclones 23 times, Dominican Republic 24 and Cambodia 29. In contrast, Madagascar has been
exposed 84 times and Philippines 284. Consequently, Bangladesh, with a number of exposure of 50, falls in
the middle of the distribution.

38Another interesting feature emerging from Table 8 is about the magnitude of the effect for the two
countries of the Hispaniola island, namely Haiti and the Dominican Republic. Haiti is much less developed
than the Dominican Republic (see also Table 2). In the theoretical section, we highlight that the post-disaster
responses of fertility could be related to the country’s level of development. For Haiti and the Dominican
Republic, it seems to be not the case. Indeed, even with two very different development levels, the fall in the
probability of motherhood is of the same magnitude. Given that the level of exposure to cyclones of these two
countries is similar, we could conjecture that, in this special case, the degree of exposure is more important in
shaping the post-cyclone fertility response than the development level.
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with a dummy equal to one if the village were exposed more than nine times to cyclonic
systems during the sample period of our study.39 We refer to these clusters as cyclone-prone
areas. Coefficients associated to this model specification can be found in the last two columns
of Table 4. Again, the inclusion of controls for temperature and rainfall do not alter the
qualitative and the quantitative causal effect of wind speed exposure on motherhood. However,
in these models, the coefficient βW

1 now captures the effect of wind speed exposure for mothers
living in non-prone area. Compared to models of columns (1) and (2), the latter is higher. All
else being equal, an exposure to cyclonic wind speed of one standard deviation size decreases
the probability of having children by 3.11 points. The interaction term of wind speed with
the dummy for cyclone prone area confirms what has been suggested previously. Overall, the
decrease in the probability of giving birth after a cyclonic exposure is lower. For mothers
living in the most exposed areas, the likelihood of giving birth decrease by 1.93 points for the
same level of exposure.40 Such a result suggests that the fertility response to a cyclone shock
is sensitive to the degree of exposure associated to mother’s environment. In that sense, our
empirical results is in line with our second working assumption.

Empirical evidence on working assumption 2:
The fertility response to cyclone shocks depends on the degree of exposure associated to the
mother’s living environment: in cyclone prone areas, the likelihood of giving birth reduce less.

5.1.3 Children ever born and fertility response to cyclone shocks

As indicated before, the model of section 2.3 does not deliver a clear message about the
post-disaster fertility response with respect to family size. Instead, the model suggest that the
post-cyclone fertility response is independent of the number of children ever born. However,
depending on the presence of children we could imagine that the post-cyclone response in
terms of fertility could be different. The association between children ever born and future
fertility is worth investigated empirically. Here, we wonder if the response of fertility to an
adverse shock depends on past fertility. To consider this possibility, we run an alternative
empirical model in which the exposure variable is interacted with dummies indicating the
number of children ever born. More specifically, we consider three dummies for mothers having
respectively one child at the time of the exposure, two children or more than two children.
Corresponding results are reported in Table 5. It is noteworthy that as before the inclusion of
rainfall and temperature does not alter the coefficient associated to cyclonic exposure. The
first row of the corresponding table can be interpreted as the effect of cyclonic exposure on

39The number of nine correspond to the 75% percentile of the corresponding distribution (see also Table 3).
40The estimated effect in cyclone prone area is significantly different from the effect in non-prone area at

the 1% level.
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(1) (2)
Max. wind in t − 1 -0.0298∗∗∗ -0.0313∗∗∗

(0.0018) (0.0018)
Max. wind in t − 1 × Having 1 child 0.0139∗∗∗ 0.0133∗∗∗

(0.0024) (0.0024)
Max. wind in t − 1 × Having 2 children -0.0372∗∗∗ -0.0378∗∗∗

(0.0025) (0.0025)
Max. wind in t − 1 × Having >2 children -0.1059∗∗∗ -0.1063∗∗∗

(0.0023) (0.0023)
Rainfall in t − 1 – 0.2104∗∗∗

– (0.0156)
Temperature in t − 1 – 0.4174∗

– (0.2504)
Observations 1,025,443 1,025,443

Table 5: Regression results depending on the number of children ever born.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses, adjusted for
clustering at the DHS cluster level. All regressions include woman fixed effect, annual fixed effect, cluster
fixed effect, country fixed effect and controls for rainfall and temperature in t − 1. Maximum wind speed is
measured in km/h, rainfall in hundreds of millimeters and temperature in Celsius degrees.
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fertility for mothers having no baby at the time of the exposure. The corresponding coefficient
is negative for both specification of the empirical model. We consistently witness negative
marginal effects for each of the interaction terms suggesting that the fall in the likelihood of
giving birth after an exposure to cyclone is a robust pattern. However, it should be observed
that, even if it remains negative, the estimated impact of cyclonic exposure is significantly
lower for mothers having one child at the time of exposure. Thus, for a cyclonic wind speed
shock in t equivalent to a standard deviation, the likelihood of having a baby in t+1 decreases
by -0.70 point for mothers having one child against -1.21 point for those having no child.
For mothers having two children (resp. more than two children) the corresponding fall in
mothers’ likelihood of having birth in t + 1 is equal to 2.78 points (resp. 5.34 points).41 As
anticipated, the marginal effect of cyclonic exposure on fertility depends on the number of
children ever born and in general mothers with a large number of children ever born reduces
more their fertility. However, one of the particularity of our results is about mothers having
one child the likelihood of motherhood seems to be less sensitive to cyclonic exposure. This
quite puzzling feature could reflect mothers preference for having at least two children for
those having already one child.

Empirical evidence on working assumption 3:
The fertility response to cyclone shocks depends on the number of children ever born:

mothers with at least two children reduce more their fertility after a cyclone shock.

5.2 Further results

In this subsection, we propose an in-depth analysis to investigate three potential features of
the causal effect. First, we estimate a specification to test the existence of non-linearities
in the effect. Second, we test whether the negative causal effect depends on mothers’ past
exposure to cyclones. Three, we include more lags in the baseline model to verify whether the
causal effect persists. The results of these alternative estimations are reported in Tables 7 and
6. Note that the study of other heterogeneity dimensions together with robustness checks,
which consist of changing the sample or the wind speed variable, are respectively reported in
Appendix B and C.
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Figure 3: Cumulative effect of wind speed exposure on the likelihood of giving birth.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Black solid lines correspond to the cumulative sum of the estimated points, while blue error bands
show the associated confidence intervals (at the 5% level of significance). The regression includes mother fixed
effects (µi), time fixed effects (ηt), village fixed effects (θv), country fixed effects (αc) controls for rainfall
(from Rt−1 to Rt−5) and mean temperature (from Tt−1 to Tt−5).

5.2.1 Is the effect persistent over time?

In the baseline model, we include a lag of the exposure variable variable. Here, we reconsider
the main specification by adding up to 5 lags of weather variables to the model.42 The latter
model allows us to investigate more precisely the medium-run effects of tropical cyclones on
fertility. For illustrative purpose, we depict the cumulative effect of wind speed exposure on
motherhood in Figure 3, while the coefficient values are provided in Table 11 of Appendix
D.43

As shown in Figure 3, the effect of a tropical cyclone shock of one-standard deviation on
the likelihood of giving birth persists over time. Furthermore, with a 5-year time frame, we
do not observe any strong offsetting behavior, namely a strong positive effect of wind speed
exposure for some lags. Table 11 of Appendix D shows that the estimated coefficients are all
statistically negative. Exploring the distributed lag nature of this model, Figure 3 indicates
that the cumulative effect of extra wind speed exposure amounts to ∑L=5

l=0 βW
l = −3.82.44

41Each time, the estimated effect associated to the interaction term is significantly different from the effect
for mothers having no children at the 1% level.

42Rainfall data are only available from 1981. We drop all observations prior to 1986, because it is not
possible to obtain 5 lags of the rainfall variable before that year.

43We also illustrate the cumulative effects for rainfall and temperature shocks in Figures 4 and 5 of Appendix
D.

44Regarding the other two weather variables, Figure 4 shows that when accounting for 5 lags, the negative
effect of rainfall shocks persists during three years, whereas that of temperature shocks has a hump-shaped
behavior.
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βW
1 ωW

1 ωW
2 ωW

3

Baseline -0.0676***
(0.0014)

Intensification -0.0775∗∗∗ 0.0085∗∗∗ 0.0207∗∗∗ 0.0177∗∗∗

(0.0020) (0.0024) (0.0029) (0.0027)

Table 6: Alternative specifications: Intensification.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses, adjusted for
clustering at the DHS cluster level. All regressions include, rainfall in t − 1, temperature in t − 1, as well as
the four fixed effects. Maximum wind speed is measured in km/h, rainfall in hundreds of millimeters and
temperature in Celsius degrees.
For the baseline row, we report the value of βW

1 .

Overall, extending the model to include more lags shows that the effect of tropical cyclone
shocks has the potential to reduce permanently the probability of motherhood in the medium
run as a non-reversal effect is observed.

5.2.2 Intensification mechanism

We now further test the hypothesis that the effect of cyclonic systems on female motherhood
builds over time. Indeed, it is possible that the impact of a tropical cyclone shock in a given
year t, as revealed by our panel estimate of equation (7), is magnified if the same woman has
also been exposed to a tropical cyclone in the past few years (e.g., in t − 1). Similar to Dell
et al. (2014), we label this mechanism the intensification effect. We consider such a possibility
by interacting wind speed exposure in a given period t with a dummy variable indicating that
a given woman i has also been exposed to one, two or more than two tropical cyclones in
the last 5 years before the exposure. Our set of dummy variables is denoted as W̃i,t−l. The
estimated equation now has the following form:

yitc = βW
1 ×Wi,t−1 +βR

1 ×Ri,t−1 +βT
1 ×Ti,t−1 +

J=3∑
j=1

(
ωW

j × W̃i,t−1
)

+µi +ηt +θv +αc +uitcv, (8)

where ωW
j are the parameters to be estimated and j the number of exposure during the past

five years. Their interpretations differ from those of βW
1 . The latter corresponds to the effect

of wind speed exposure in period t − 1 on the current likelihood of motherhood. However, the
second coefficient, namely ωW

1 , captures a different effect, namely the incremental effect of
wind speed exposure on motherhood in period t−1 if the woman has additionally been exposed
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βw̃1
1 βw̃2

1 βw̃3
1 βw̃4

1 βw̃5
1 βw̃6

1

Baseline -0.0676***
(0.0014)

Non-linearities -7.9307*** -7.2436*** -7.4471*** -7.4507*** -6.5088*** -5.1767**
(0.1387) (0.2690) (0.4420) (0.5325) (0.7928) (2.2655)

Table 7: Alternative specifications: Dummies for non-linearities.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses, adjusted for
clustering at the DHS cluster level. All regressions include, rainfall in t − 1, temperature in t − 1, as well as
the four fixed effects. Maximum wind speed is measured in km/h, rainfall in hundreds of millimeters and
temperature in Celsius degrees.
For the baseline row, we report the value of βW

1 .

to only one tropical cyclone during the five past years preceding the exposure. Consequently,
the intensification parameters, namely ωW

j , explore if the effect of a tropical cyclone shock
depends on the pattern of previous shocks.

The last row of Table 6 explores the possibility of intensification effects by adding W̃i,t−1

to the model. Overall, there is no evidence regarding the existence of an intensification
mechanisms. The three ωW

j are estimated to be significantly positive. This finding suggests
that the impact of wind speed exposure in t − 1 is dampened if between t − 2 and t − 6, the
mother has also been exposed to tropical cyclones. Let us consider that before the exposure
in t − 1, the mother has been exposed to two tropical cyclones. In this case, the total effect of
an extra wind speed exposure amounts to -0.0568 (namely, βW

1 + ωW
2 ).45 All in all, the fact

that the decrease in the probability of motherhood is lower for exposed mothers in a recent
past echoes with the empirical evidence on working assumption 2: regularly exposed mothers
appear to be less sensitive to cyclonic shock.

5.2.3 Non-linearities

Our baseline model implicitly assumes that the fertility response to tropical cyclone shocks is
linear. However, the literature exploring the effect of weather shocks on economic variables
often indicates that the effects are likely to be non-linear. In particular, Emanuel (2011)
and Nordhaus (2010) suggest that damage due to tropical cyclones exponentially increases
with the level of wind speed experienced on the ground. Despite such suggestions, it is
not straightforward when other socioeconomic variables also respond non-linearly to wind

45For each coefficient, we check that the total effect is significantly different from βW
1 .
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speed exposure, especially in a context when household micro-data is used. To reveal a
possible non-linear relationship, we follow a non-parametric approach by breaking wind
speed up into bins corresponding to the Saffir-Simpson scale. This approach has two main
advantages. On the one hand, it is simple to implement. On the other, it is flexible and
does not impose any functional forms on our wind speed explanatory variable. Hence, we
construct six dummies equal to one when wind speed falls within the bin and zero otherwise.
Specifically, w̃1

t = 1(Wt ∈ [62; 118[), w̃2
t = 1(W ∈ [118; 153[), w̃3

t = 1(W ∈ [153; 177[),
w̃4

t = 1(W ∈ [177; 208[), w̃5
t = 1(W ∈ [208; 251[), and w̃6

t = 1(W ∈ [251; 300[).46 We report
the related results in Table 7.

Given the standard errors associated with point estimates, we cannot conclude that the
post-fertility effect of the tropical cyclone shock is non-linear with maximum wind speeds. In
particular, coefficients associated to the highest wind speed, namely βw̃6

1 is not significantly
different from βw̃1

1 . It should also be observed that coefficients’ standard errors is increasing
with the level of the Saffir-Simpson scale. This indicates that for the most extreme phenomenon
the estimated effect between cyclonic exposure and fertility.47 The linear approximation used
in our baseline model appears as a relevant departure point.

6 Concluding remarks

The economic literature is still inconclusive about the direction of the effect of natural disasters
on fertility. Theoretical models based on the quantity-quality approach of Becker (1960)
as well as empirical estimates find both a positive and a negative association between the
two phenomena. Given this disparity, our paper sought to respond to this question in the
context of six developing countries regularly threatened by cyclonic systems. Our empirical
strategy significantly improves the body of knowledge, because we exploit spatially geolocated
household micro-data together with weather data that captures true cyclonic exposure at a
high-resolution level (Geiger et al., 2018). Merging these two types of spatial data enables us
to construct panel data to indicate whether a given mother gives birth in a specific period
and whether she was exposed to cyclonic wind speeds. Our panel data allows us to retrieve
the causal effect of tropical cyclone wind speed shocks while relying on a minimal set of
identifying assumptions (Dell et al., 2014).

After presenting a theoretical model from which three working assumptions about the
effect of cyclonic exposure and fertility are derived, we aim at providing empirical evidence

46Implicitly, the first bin w̃0
t = 1(Wt ∈ [0; 62[) serves as reference in the regression.

47To further check the existence of a non-linear model, we run another regression with bins having the same
amplitude. Again, we do not find any significant difference between coefficients associated to the highest and
the lowest level of wind speed. Corresponding results are available upon request.
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about these important questions. Improving the understanding of the links between cyclones
and fertility is imperative in order to build appropriate public policy responses, particularly in
poor countries. Our main results indicate that exposure to tropical cyclone wind speeds leads
to a fall in the probability of giving birth, in line with the work of Pörtner (2014), Davis (2017),
Norling (2022) but in contrast with the work of Cohan & Cole (2002), Hamilton et al. (2009),
Evans et al. (2010) or Berlemann & Wenzel (2018). Heterogeneity analyses further suggest
that the magnitude of the effect varies with the degree of exposure to cyclones associated
to the household’s living environment but also to the number of children ever born. First,
in cyclone prone areas, the likelihood of giving birth reduce less, which suggests a process
of adaptation in exposed populations. In that sense, our finding echoes with conclusions
suggesting that human behaviors could adapt to climate change (Casey et al., 2019; Thiede
et al., 2022). Second, mothers with at least two children reduce more their fertility after a
cyclone shock. This result can also guide the design of public policies to respond to shocks
by taking into account the family structure of the territory concerned, which could have an
impact on demographic dynamics. Refinements of the main results indicate that the negative
effect persists over time, while we find evidence that past exposure to cyclones imply a weaker
decrease in fertility. However, our empirical model does not indicate non-linearities in the
effect.

The panel estimates proposed in this paper are useful to highlight the fertility response to
a tropical cyclone shock. In light of this, our estimates do not respond totally to how mothers
adjust their fertility when the risk associated with tropical cyclones increases. This issue is of
particular importance, since climate change has the potential to alter the frequency, genesis,
spatial extent, and characteristics of the most extreme tropical cyclone events (Knutson et al.,
2010; IPCC, 2019; Knutson et al., 2020). At this stage, even though our study found a
negative response of fertility to cyclonic shocks, we cannot exclude the possibility that fertility
could actually increase in response to tropical cyclone risks in the future. This is a further
challenge for policy designers as climate change could also alter the opportunity cost of having
babies. To deal with is, we believe that policy makers should engage in policies focusing the
supply of family planning as well as those influencing the demand for fertility by reducing for
instance household poverty and girl’s school enrollment. We believe that such investigations
could improve our understanding of the mechanisms explaining fertility behavior. This is,
however, beyond the scope of this paper, although it is on our agenda for future research.
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B Exploring others heterogeneity dimensions

B.1 Differences in urban-rural

According to Kochar (1999), Evans et al. (2010), and Pörtner (2014), the occurrence of a
cyclone modifies the shadow price of having an extra child, especially if couples live in areas
that are more likely to be negatively impacted. In developing countries, a large share of the
population lives in rural areas and depends on agricultural activities. As stressed by Dessy
et al. (2019), the characteristics of economic life differ drastically in rural and urban areas. In
rural areas, women contribute actively to agrarian activities, meaning that their labor supply
is an important input of this production activity. By contrast, in urban areas, it is easier for
women to diversify their activities, as they have greater employment opportunities in the
service sector. Thus, in urban areas, women depend less on activities that may be damaged
by tropical cyclone exposure unlike their rural counterparts engaged in agricultural activities.
Consequently, it is likely that the opportunity cost of motherhood and raising children is less
linked to tropical cyclone exposure in urban than in rural areas. To test this mechanism, we
introduce another heterogeneity dimension into our econometric framework using interaction
terms. We interact the wind speed variables with a dummy indicating if the household lives
in a rural area.

The econometric model of column (1) of Table 9 show the corresponding estimates. Being
exposed to tropical cyclone wind speed is associated with a greater decrease in the probability
of giving birth in rural areas. The difference between the estimated marginal effects is
significant.

j = rural j = low educated

Max. wind in t − 1 -0.0614*** -0.0519***
(0.0019) (0.0016)

Max. wind in t − 1 × (j = 1) -0.0096*** -0.0279***
(0.0023) (0.0021)

Observations 1,025,443 1,025,443

Table 9: Cyclonic wind speed exposure for models including heterogeneity dimensions by
interaction terms.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses, adjusted for
clustering at the DHS cluster level. All regressions include, rainfall in t − 1, temperature in t − 1, as well as
the four fixed effects.
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B.2 Differences by education

The last heterogeneity dimension that we explore involves interacting wind speed exposure
with a dummy that indicates if the mother has a low level of education at the time of the
interview. Indeed, we could conjecture that low-educated women have a greater chance of
working in the agricultural sector compared to those with a high education level so that
post-cyclone opportunity cost of having children could be higher. Correspond regression
results are displayed in the second column of Table 9. As anticipated, the reduction in the
likelihood of giving birth after a cyclone shock is higher of about 50% for mothers with a low
level of education. More specifically, the total marginal effect amounts to 0.0798.
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C Robustness analysis

Overall, the panel estimates presented in the main text reveal that a tropical cyclone shock
leads to a significant fall in mothers’ likelihood of giving birth. These findings could be sensitive
to different choices when estimating the baseline model. To ensure that the main message
of this paper holds true, we check for the robustness of our results along five dimensions:
i) alternative formulations of the tropical cyclone variable, ii) the sample period, iii) the
merging of geolocated data, iv) the inclusion of migrant mothers in our final sample, and
v) the inclusion of cluster-specific time trends. Results of these alternative estimations are
reported in Table 10.

Tropical cyclone variable An important robustness check is to establish whether the
results are similar when alternative formulations of our measure of tropical cyclone exposure
are used. We address this issue by considering two other measures of the tropical cyclone
incidence.

More recently, rather than directly using the wind speed experienced by a given spatial
unit, many papers construct ad-hoc indexes of potential destruction (also known as a damage
function).48 The reasoning behind such indexes follows Emanuel (2011). More specifically,
below a certain threshold W̄ , it is unlikely that wind speed provokes substantial physical
damage so that the level of physical destruction could be assumed to be zero. However, once
the wind speed generated by the cyclonic system is above W̄ , the level of damage increases
though in a non-linear fashion. To understand how such alternative measures of tropical
cyclone exposure affect our conclusion, we run two other checks.

In the first one, we follow a similar strategy as Strobl (2012) and construct the following
index of potential destruction:

Dit = W λ
it if Wit > W̄and zero otherwise (9)

When constructing Dit, two parameters are of importance, because they shape its functional
form: λ, which corresponds to the parameter relating the maximum surface wind speed
experienced to the level of damages, and W̄ , which is the threshold above which the level of
destruction becomes perceptible. Different values of these two parameters have been proposed,
although empirical evidence about them is scarce, especially for developing countries. In the
US context, Emanuel (2005) suggests that the level of damage can be studied by the cubic
value of the maximum wind speed at the surface. By contrast, Nordhaus (2006) suggests that

48Examples include Strobl (2011), Strobl (2012), Bertinelli & Strobl (2013), and Mohan & Strobl (2017).
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destructiveness increases with the eighth power of maximum wind speed.49 Concerning W̄ ,
Strobl (2012) and Bertinelli & Strobl (2013) set it to 177 km/h (the value above which a
cyclonic system becomes category 3 on the Saffir-Simpson scale), while Mohan & Strobl (2017)
select a value of 119 km/h (the value above which a cyclonic system becomes category 1 on
the Saffir-Simpson scale). Without further evidence about these parameters, we choose λ = 3
as suggested by Emanuel (2005) and Strobl (2011), and we fix W̄ = 93 km/h as indicated by
Emanuel (2011). Column (2) of Table 10 shows the results of this alternative estimation.

In the second check, we follow Emanuel (2011) and construct the following index fct to
capture the proportion of damaged property:

fct = v3
ct

1 + v3
ct

(10)

with

vct =
MAX

(
Wct − W̄ , 0

)
W ∗ − W̄

. (11)

Where c denotes a cluster and W ∗ corresponds to the threshold at which half of buildings are
damaged. Again, we lack strong empirical evidence when choosing an appropriate value for
W ∗. Here, as we fix W̄ to 93 km/h, we set W ∗ to 166 km/h, namely the threshold of wind
speed at which the RSMC of La Réunion labels a tropical system as “intense”. Corresponding
results are reported in column (3) of Table 10.

A closer inspection of columns (2)-(3) of Table 10 leads to a few comments. First, the
qualitative patterns of our results are entirely preserved, since estimated coefficients for the
two different measures of wind speed are all negative. Second, the observed quantitative
patterns are broadly consistent with our baseline estimate, even if the non-linear nature of
the wind speed variable of models has some interpretative incidence. Thus, for a level of
destruction in t − 1 equivalent to the standrad deviation of the damage function, the models
of column (3) (resp. column (2)) indicates that a mother is 0.5 points (resp. 0.8) less likely to
give birth in t. The negative effects are substantially higher when considering events with
extreme wind speeds of 250 km/h. In particular, for such a level of exposure, the probability
of motherhood falls by 6.1 points (resp. 12.8 points) for the index of potential destruction
of equation (10) (resp. equation (9)). Regarding the use of a dummy variable, the model
of column (2) suggests that being exposed to a tropical cyclone reduces the likelihood of
childbearing by 28.97 points in t, 6.4 points in t + 1, and 2.9 points in t + 2.

Overall, the use of other measures of tropical cyclone exposure shows that our main result
does not depend on the choice of the wind speed variable. The three alternative measures

49In the context of US coastal counties, Strobl (2011) uses an estimate of 3.17 for λ.

46



used in this section nevertheless have many limitations, since they either do not exploit
the variability generated by Wit (model of column (2)) or rely on parameters for which the
evidence is missing in the context of Madagascar (models of columns (3) and (4)). For this
reason, our preferred specification directly uses the wind speed variable of Geiger et al. (2018).

47



Ba
se

lin
e

W
in

d
sp

ee
d

va
ria

bl
e

W
ith

m
ig

ra
nt

s
Sa

m
pl

e
pe

rio
d

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

β
W 1

-0
.0

67
6*

**
−

8.
19

e06
**

*
-6

.6
63

9∗∗
∗

-0
.0

60
7∗∗

∗
-0

.0
66

6∗∗
∗

-0
.0

65
8∗∗

∗

(0
.0

01
4)

(4
.7

8e
−

07
)

(0
.4

94
0)

(0
.0

01
0)

(0
.0

02
2)

(0
.0

01
9)

O
bs

.
1,

02
5,

44
3

1,
02

5,
44

3
1,

02
5,

44
3

1,
78

5,
13

7
52

6,
82

2
49

8,
62

1

Ta
bl

e
10

:
A

lte
rn

at
iv

e
sp

ec
ifi

ca
tio

ns
:

R
ob

us
tn

es
s.

So
ur

ce
s:

D
H

S,
T

C
E

-D
AT

of
G

ei
ge

r
et

al
.(

20
18

),
C

H
IR

P
S

da
ta

se
t

of
Fu

nk
et

al
.(

20
15

),
C

R
U

da
ta

se
t

of
H

ar
ris

et
al

.(
20

14
),

an
d

au
th

or
s’

ow
n

ca
lc

ul
at

io
ns

.
N

ot
es

:
Si

gn
ifi

ca
nc

e
le

ve
ls:

*
10

%
,*

*
5%

,*
**

1%
.

R
ob

us
t

st
an

da
rd

er
ro

rs
ar

e
in

pa
re

nt
he

se
s,

ad
ju

st
ed

fo
r

cl
us

te
rin

g
at

th
e

D
H

S
cl

us
te

r
le

ve
l.

A
ll

re
gr

es
sio

ns
in

cl
ud

e
m

ot
he

r
fix

ed
eff

ec
ts

(µ
i)

,t
im

e
fix

ed
eff

ec
ts

(η
t
),

co
un

tr
y

fix
ed

eff
ec

ts
(α

c
)

cl
us

te
r

fix
ed

eff
ec

ts
(θ

v
)

co
nt

ro
ls

fo
r

ra
in

fa
ll

(R
t−

1)
an

d
m

ea
n

te
m

pe
ra

tu
re

(T
t−

1)
.

T
he

m
od

el
of

co
lu

m
n

(1
)

co
rr

es
po

nd
s

to
th

e
ba

se
lin

e
m

od
el

.
T

he
m

od
el

of
co

lu
m

n
(3

)
us

es
th

e
in

de
x

of
po

te
nt

ia
ld

es
tr

uc
tio

n
of

eq
ua

tio
n

(9
)

in
st

ea
d

of
th

e
ba

se
lin

e
w

in
d

sp
ee

d
va

ria
bl

e.
T

he
m

od
el

of
co

lu
m

n
(3

)
us

es
th

e
in

de
x

of
eq

ua
tio

n
(1

0)
in

st
ea

d
of

th
e

ba
se

lin
e

w
in

d
sp

ee
d

va
ria

bl
e.

T
he

m
od

el
of

co
lu

m
n

co
lu

m
n

(4
)

co
rr

es
po

nd
s

to
th

e
es

tim
at

io
n

of
th

e
ba

se
lin

e
es

tim
at

e
fo

r
a

sa
m

pl
e

in
cl

ud
in

g
m

ig
ra

nt
m

ot
he

rs
.

R
es

ul
ts

of
co

lu
m

ns
(5

)
an

d
(6

)
co

rr
es

po
nd

to
th

e
m

od
el

s
fo

r
th

e
sa

m
pl

e
pe

rio
ds

19
85

-1
99

7
an

d
19

97
-2

01
5,

re
sp

ec
tiv

el
y.

48



Sample restriction regarding migration In the main text, we present the results based
on a sample of mothers who declared that they had always lived in their current home. We
restrict our sample to non-migrant mothers to ensure that when iterating backwards, we
retrieve only the true exposure to cyclones. Indeed, the risk when including migrant mothers
is that cyclone exposure may be attributed to a woman who actually lived elsewhere at the
time of the event. Furthermore, the DHS includes a variable that indicates the number of
years of residence in the current home. However, as highlighted by Kudamatsu (2012), this
declarative variable could be subject to a recall bias. For these two reasons, we exclude all
migrant mothers in our baseline analysis. One potential pitfall of this sample restriction is that
non-migrant and migrant mothers may differ with respect to the observable characteristics.
In particular, we may suppose that non-migrant mothers are older than migrant mothers
on average. In this robustness exercise, we consider another sample before re-estimating
equation (7). In addition to non-migrant mothers, we include migrant mothers but keep only
the observations after their arrival at their current home. Corresponding results can be found
in column (4) of Table 10 and show no significant difference from the baseline estimates of
the main text.

Sample period Implicitly, our baseline model assumes that the estimated effect is averaged
over the entire sample under scrutiny. However, it is possible that the decision to have children
changes over time. We address this possibility by separately estimating equation (7) for two
sample periods. The first sample spans the 1985-1997 period, while the second one begins in
1985 and ends in 2015. Results are respectively reported in columns (5) and (6) of Table 10.

The main insight provided by these alternative panel estimations is that there is no
significant difference in the causal effect of wind speed exposure among the two sub-periods.
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D Model with 5 lags
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Figure 4: Cumulative effect of rainfall shocks on the likelihood of giving birth.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Black solid lines correspond to the cumulative sum of the estimated points, while blue error bands
show the associated confidence intervals (at the 5% level of significance). The regression includes mother fixed
effects (µi), time fixed effects (ηt), village fixed effects (θv), country fixed effects (αc) controls for rainfall
(from Rt−1 to Rt−5) and mean temperature (from Tt−1 to Tt−5).
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Figure 5: Cumulative effect of temperature shocks on the likelihood of giving birth.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Black solid lines correspond to the cumulative sum of the estimated points, while blue error bands
show the associated confidence intervals (at the 5% level of significance). The regression includes mother fixed
effects (µi), time fixed effects (ηt), village fixed effects (θv), country fixed effects (αc) controls for rainfall
(from Rt−1 to Rt−5) and mean temperature (from Tt−1 to Tt−5).
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βW
1 βW

2 βW
3 βW

4 βW
5

Baseline -0.0676*** - - - -
(0.0014) - - - -

Five lags -0.0707∗∗∗ -0.0054∗∗∗ -0.0032∗∗∗ -0.0071∗∗∗ -0.0119∗∗∗

(0.0015) (0.0012) (0.0012) (0.0012) (0.0013)

Table 11: Alternative specifications: Varying the number of lags.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014), and authors’ own calculations.
Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses, adjusted for
clustering at the DHS cluster level. All regressions include rainfall in t − 1, temperature in t − 1, as well as
the four fixed effects. Maximum wind speed is measured in km/h, rainfall in hundreds of millimeters and
temperature in Celsius degrees.
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